3 e v st s e TR <

e - gy

v o o g,

PROCEEDINGS, VOLUME 11

NCGA’S COMPUTER GRAPHICS “87

EIGHTH ANNUAL CONFERENCE AND EXPOSITION

PHILADELPHIA CIVIC CENTER
PHILADELPHIA, PA.
MARCH 22-26, 1987

TECHNICAL SESSIONS
VOLUME 11

Copyright 1987 by the National Computer Graphics Association
ISBN 0-941514-17-X (Volume III)
ISBN 0-941514-14-5 (Three-Volume Set)

Cover image courtesy of PDA Engineering

Accelerating Interactive
Applications

Mary C. Whitton

Trancept Systems Inc.
521-F Uwharrie Court
Raleigh, NC 27606-1456

ABSTRACT

User interaction in an application requires significant processing
after user input before a new image can be displayed. This
processing consists of two parts: application processing and
graphics processing. 1In real world problems application processing
dominates graphics processing in terms of complexity and length.
General purpose, function, and application accelerators are
examined. The interactive application environment of the future
requires an application accelerator which is a software
reconfigurable multi-processor system with an architecture
optimized for applications involving spatial and geometric data
bases, graphics, and image processing.

INTRODUCTION

The goal of high performance graphics has always been to

allow humans to better use computers by improving the man-machine
interface. The human visual ,system and computer graphics together
make a highly efficient mechanism transferring information from
computer to man. The target is real-time interaction of the user
with the generation and manipulation of data from highly complex
and diverse applications. Meeting thie target requires evaluating
the computational steps in the interactive process and developing
systems which optimize performance at each step. The job will not
be done until the human is the slow link in the system,

IHE INTERACTIVE_LOOP

The interactive process is a loop. First, the user enters data
which causes processing and the generation of an image on the
screen. Pased on visual feedback from this image the user enters
new data which causes a new image ... and so on (Figure 1). Two
types of processing occur between user input and new image:
graphics processing and application processing,

Graphics Processing

For the purpose of this paper graphics is restricted to raster
graphics and the graphics task is defined as those processes needed
to get from a graphical data set to pixels: transformation,
clipping, visibility, and shading operations for vector, character,
polygon, and pixel data. (Ray tracing and direct display of
parametric data extend beyond the graphics task because they
operate directly on applications data.)

Graphics at this level is becoming standardized. Applications have
a fairly uniform set of graphics requirements, For instance, a 3-D

439

surface used in a seismic reservoir mod
C el can be displayed
Nwﬂm wwﬂnwwwwowwswwwuu:wﬂﬂmnnw in an architectural nM:&WM»:meMo the
ith polygonal graphical data. B
wide range of applications use the same 3 thme it
graphics algorit
possible to develop special purpose hardware for nLWLM muuﬂnwﬂnwm

The effort to accelerate
graphics processing began with ti
wummmnomwmwwMMnMoMnMMmMMMM wwwo the frame vcmmow to ru:mumwaunswzm
¢ e c integrated circuits were d :
the viewing pipeline More recentl o obeing "
. tom silicon for d i
operations has become common. The hﬂno:ﬂwx ackara
9000 Model 320SRX, and GE nnw T R e ening for
phicon all c
painting pixels into the image memory. ontain custom chips for

With the promise of affordable 2000+

polygons per fr
engines in the future, the graphics process ooMmom.nMaMmmMﬂano
limiting factor in the interactive loop.

Application Processing

Today, interactive applications means
more than cha
Mﬂ@wo and repainting the screen. For example, it smmwuaawwwwmthm
anges in the application data base, either to geometry or to

aramet
wawom. ers, and viewing the effect of the changes in the screen

User inputs in real world applicatons a
re complex., P
Mcwwwwm MMWMWMW@AMMaMn:nnawmrM be %add a :mmhﬂn<m o%%ﬂ:wMMeMMommo
reate a hole). The applicatio
involves computing the surfaces which o ity
bound the hole and d

the data base to include the ne o o leying
e fovied in real time today. w surfaces. This task cannot be

Increasingly, visual displays are essential f
or viewi
nwmwhmwwwomwaanﬂmuwnmmmsma m:ﬂwwmuu. molecular aomawmamwuuwwm in
. ese applications are so comput
that they are run in batch or time shared mode nomww. Muwwwwsmncm

performance processors
Sok i ared msnonmonwcmmno required before these applications can

Application processing is trul
y application specific., T
Mmmwunwawsnm of desktop publishing are :onsws% like nvom”oOm
med ca maging which in turn are nothing like those of electrical
¢ . Requirements within industries also vary. There is little
vmmnwﬂwuwmwwmwmnMMm :Mmmm of Mmarmnunnu CAD on what the "standard"
modeling should b
standard parametric mcnnmnw nomon»wnwnwsm even less agrasment on &

VISUAL
FEEDBACK

USER t—»{ APPLICATIONS GRAPHICS |—P»
INPUT PROCESSING PROCESSING DISPLAY

Figure 1. The Interactive Loop

EEE»VEEE%EEE

In simple applications such as viewing a gtatic data base, the
ratio of application to graphics processing ig very small.

In real world applications on real world data sets application
processing overwhelmingly dominates graphics processing. To
successfully implement high performance, interactive applications
in the future we must address both processing steps in the
interactive loop: the graphics requirements and the more complex
application processing requirements. Traditional graphics
subsystems meet only the first requirement.

Hum|mmbbcHHbm|bmFhbbbNhthszwbhHHKNIMDECHHbzm

The tasks in the interactive 1oop have historically been divided
between the general purpose CPU and the graphics subsystem. The
role of the subsystem expanded as new hardware made increasing
functionality possible. Users concerned with high performance have
taken advantage of the computational power available and moved an
increasing amount of the interactive loop to the graphics
gsubsystem. An examination of the evolution of graphics subsystems
shows how the task division between CPU and subsystem has changed.

“pupb” Frame Buffers

Raster frame buffers became available in the 1970's. Their only
task was to display the pixels which were generated by the CPU.
All application and graphics processing was performed by the CPU
with pixel values passed from CPU to frame buffer. Pixel read back
was an advanced feature. Grinell and Ramtek were early vendors.

*Smart" Frame Buffers

L}
In the late seventies the first "smart® frame buffers came to
market. The "smart"” buffers could accept ejither pixels or commands
such as "draw line" and wdraw circle.,” This was the first off-
loading of drawing computation from the CPU, The processors in the
systems were not user programmable and functionality was limited to
those primitives provided by the vendor. Commands were transferred
as character strings. Redrawing the image involved transferring
all of the commands to the graphics device again. Genisco and
Lexidata had early systems in this category.

As processors become more capable and interfaces improved, display
1ists could be downloaded to the graphics subsystem, The role of
the graphics processor expanded so that the picture could be
redrawn locally and modified by changing the display list without
transferring the entire command and data set from the host again.
The Ramtek 9400 series is a good example of this class of machine.

Local 3-D transformations becane available on raster devices in the
early 1980's. visibility calculations moved to the graphics
processor with early implementations of the Z-buffer in research
l1abs on Genisco and Adage/Ikonas equipment and, commercially, on
Lexidata hardware. with local transformations, shading, and
visibility calculations now in the subsystem, the move of the
graphics processing to the graphics subsystem is complete.

High performance graphics processors are computers intimately

integrated with a display memory. Built of bit slice parts they
have performance significantly higher than that of integrated

single chip processors In gra
. phics subsystems, the proce
typically controlled by firmware resident ownrmm in mwz onmﬂMﬂ s

As graphics processors became more generall rogra

vendor and the brave), more functionality nmwwamuth%%hﬁwMuw=ﬂ”mo
libraries supplied by the vendors. The mid-eighties saw the
emergence of application specific libraries, from Adage/Ikonas (Van
Hook 84, Van Hook 86, England '86] and Lexidata. The libraries
contain routines for drawing application specific primitives as
well as routines for the local processing of the application data.

An example of an application specific primitive is t

seismic "wiggle trace.” An mvkuomnwom specific nO:MM:Mwwwwwmm

these plots to be drawn directly from the source data with a single

library call, avoiding a time consuming process of creating an

enormous vector and polygon list which must then be drawn. The

MMMHMMMmeManMwmmnme wowm Model 320SRX library for the display of
- ationa -8 ne su

Processing ot mvawOmnme e rfaces is a good example of local

The programmability of the advanced graphics subsystem allo
application developer to move highly application wvmnumwa wann”mom
software into the subsystem. The key to developing interactive
applications is to move to the computationally intense applications
processing from the CPU to a applicaton accelerator subsystem which
is dedicated to the interactive task., See Figure 2.

APPLICATION PROCESSING DISPLAY

SMART FB

FIRMWARE CONTLD
GRAPHICS SUBSYS

Figure 2. Division of tasks in the interactive loop.

STRATEGIES FOR ACCELERATING APPLICATION PROCESSING

If we take for granted that in the future displa
swsmnmsnmsoocmuw-. the bottleneck in u:nmnwonm<m<MvMWWMrNMLWMmMM
application processing to supply new data to the graphics
subsystem. The task, taken across a range of applications, is both
difficult and diverse. Significant processing power is nwncwnmm
Products which can accelerate this processing fall into three)
classes: general purpose computers used as accelerators, single
m::ﬁnum: accelerators, and application accelerators. Figure 3
summarizes the sections which follow.

General Purpoge Strategies

General purpose processors are the most general ¢
C ategory of
accelerators. Designed to be used in a wide range om vwocumam.

42

v

~

they are not optimized for any one function or even a class of
functions., While they accelerate everything a little bit, they
accelerate nothing extremely well.

Network Servers. Several companies, including Convex, Alliant, and
Culler, are producing mini-supercomputers which can be attached to
a workstation network as computational servers. Advantages of
these systems are their high performance and their standard
language compilers. Existing software can be ported to the systems
with some effort. Optimizing compilers allow the user to take
advantage of the multi-processor architectures.

A major disadvantage of network servers is limited network bandwith
which causes an I/O bottleneck, Only on very time consuming
problems can the decrease in computation time offset the data
transfer time. Network technology makes these machines unsuited for
acceleration in a interactive environment.

The High-MIP Workstation. This is the year, 1987, that the

"gsuperworkstation" will come to the market. The market expects
that these products will offer 10+ MIPS on the desktop with
integrated real-time graphics. Most of the expectation surrounds
the planned products of Stellar Computer and the Dana Group. These
workstations will be appealing because some application software
can be moved to this new environment. Applications may run faster,
but, perhaps, still not interactively.

The downside of the systems based on a very fast CPU is the reality
of the volume of processing that the CPU is expected to perform. In
addition to running the operating system and usual windows based
user interface, high end applications will increasingly require
data base management, expert systems, and more sophisticated user
interfaces such as voice recognition. If a central CPU is handling
these tasks as well as interactive 3-D graphics, it seems that few
cycles will remain for actual application processing.

L3

Functiopn Accelerators

Function accelerators accelerate one function within one
application., For this reason they are sometimes called "point
accelerators.” They perform one specific task in a single
application area, for instance the logic simulation function in the
electrical CAE application. Function accelerators offer good
performance for the task for which they are designed, but they are
unable to do anything else well (if at all). They are seldom
programmable and have little, if any, flexibility. Function
accelerators can be highly specific integrated circuits or board or
system level products.

Application software must be modified to take advantage of the
accelerator. Such modifications are frequently difficult,
particularly in existing application packages.

Because of the large investment required to develop a cost
effective function accelerator, they are common only in large
markets. Potentially, function accelerators offer the highest
performance of any acceleration strategy. Overall application
performance improvement may, however, be disappointing since only
one task of the many is speeded up. System balance is critical.

Punction accelerators available for interactive applications
jnclude the Weitek Z-buffer chip set for graphics, the Evans and
Sutherland PS300 Energy Processor, and a variety of electrical CAE
accelerators from companies such as Zycad and Silicon Solutions.

Several commercial vendors are considering developing function

accelerators for the analysis task. Work on products for solid
modeling, as well as other applications, is hampered by the
diversity of functions requiring acceleration. The market for each
variation of so0lid modeler is not large enough by itself to support
development of a function accelerator specific to that modeler. A
more general acceleration strategy is needed.

Application Accelerators

Application accelerators speed up virtually all of the functions
within an applicaton. For this reason they are sometimes called
global accelerators. They offer the highest overall application
acceleration of any of the three acceleration strategies. Even
though their performance for any one function within the application
may be slower than a function accelerator, their overall

application throughput is higher.

An example of an application accelerator is a traditional image
processing system. Such a system accelerates many of the functions
required by the application: filtering, variable color maps, and
image-image computations. The Mentor Compute Engine is an

example of an application accelerator for electrical CAE. It
addresses both logic and circuit simulation.

Functional flexibility in application accelerators is often
achieved by designing with programmable parts. The devices are
used by porting a portion or all of an application software package
to the accelerator. The diversity of tasks addressed by these
products means that they must have support for high level languages
and tools to facilitate software porting.

Because an application accelerator is programmable, it can be used
for purposes for which it was not designed. For instance, an
integer product such as the PIXAR, which was primarily designed for
image processing, can, with some difficulty, be programmed to
generate graphical images.

Array processors are application accelerators which are well suited
for signal processing. Their architecture is well matched to the
data flow and processing required by this task. Only with great
difficulty and the sacrifice of much of their performance can array
processors be programmed for more general applications. They are
not well suited to accelerate operations on geometric or spatially
organized data as is required by many interactive applications.

The price of application accelerators varies widely based on what
level of computational power is available, how much local memory is
incorporated into the system, and the level of software support
(compilers, debugging tools, libraries) the vendor offers.

Properly designed application accelerators offer performance very
nearly equal to that of function accelerators. The product
architecture can be optimized for the data type and size, data
flow, and processing required by the application. Application
accelerators have the flexibility to address the range of functions
required by their target application, while incorporating features
which make them significantly outperform general purpose computers.
They have a place in the application enviroment of the future.

THE INTERACTIVE APPLICATION ENVIRONMENT OF THE FUTURE

Although "expert systems” and artificial intelligence will help in
high end applications in the future, a human will remain in the
interactive loop for the foreseeable future. This means that we
will continue to need graphics for visual feedback and increasingly
powerful accelerators for application processing.

o e ey

TYPE FUNCTIONALITY PROS CONS
GENERAL « All functions of « Can do anything « Requires software port
PURPOSE all applications - Does all of task « Limited V'O bandwidth

» Modest performance improvement
APPLICATION » All functions of + Max application through-put |- Requires some software porting

ACCELERATOR appjication » Flexibility preserves software

- investment -

FUNCTION « Single function of |+ Low Cost « Requires software modification

ACCELERATOR single application }- High function performance |* Limited flexibility and functionality
« Limited application performance

improvement

Figure 3. Types of Application Accelerators

High Performance Graphics

Each generation of graphics products brings us closer to real time
rendering of complex scenes. The future will bring us "enough”
speed to support interaction and the quality of "enough® will
improve. In the future interactive shaded polygons will give way
to interactive ray tracing. The user will generate the highest
quality images possible while still maintaining interactivity.
Display size and resolution will increase to allow the user access
to more information simultaneously.

computational Power as a Personal Regource

The trend to personal computing resources will continue. High end
application users have moved from batch/time sharing on a departmental
computer to the engineering workstation in the last ten years. A
personal resource with 2-4 MIPS computational power with integrated
graphics and a window based user' interface is the high-end norm
today. Users in the future will expect even more power to be
available to them, individually, dedicated to solving their
application problem.

Parallel and Multi-Processor Systems

Very high performance architectures increasingly include multiple
processors. Whether the processors are organized to operate on
multiple independent tasks or on a single task in parallel, this
move to multiple processors is a fundamental change in the way the
world computes. Processors in this class today range from board
level products with multiple copies of commercially available
processors to highly specialized architectures such as the
massively parallel and data flow machines.

The bus bandwidth between disk and memory and between processors in
multi-processor systems will improve as newer, higher speed bus
standards emerge. The serial port on video RAMs is excellent not
only for output to displays, but for very high speed data input.
Very high speed block transfer busses will be used in the future.

Previously, when there were few multi-processor computers, an elite
group of programmers developed and optimized a very few programs
for the machines. This is changing. In the future the average
programmer will have to learn to think about problems in a multi-
processor environment.

New compilers will allow code written for traditional single
processor architectures to run efficiently in the new multi-
processor environment, Optimizing compilers are important to allow

continued use of existing code, and existing programmers. Just as
"good programming® today is judged by performance on single
processor machines, "good programming” in the future must be
defined as efficient execution on a multi-processor machine.

It is difficult to move portions of single threaded programs with
many nested subroutine calls to any multi-processor environment.
Functional blocks cannot be easily isolated. Even a conceptually
clean partition such as moving rendering from the CPU to an
attached graphics processor is difficult in large application
programs. The problem is even more difficult when the target
processor is an application accelerator, particularly the wrong
accelerator for the job.

THE_RIGBT ACCELERATOR FOR APPLICATION PROCESSING

The Right Strategy

Overall application performance and user productivity will be
heavily affected by the choice of accelerator. To determine what
architecture and acceleration strategy is most appropriate, the
designer must look for common threads in the tasks to be
accelerated. If the low level tasks are common, a function or
point accelerator is appropriate. If there is no commonality at
all, a general purpose accelerator should be used. An application
accelerator is the best solution if there are common major
characteristics and a diversity of low level functions,

The common threads in the high end applications which use the
interactive loop are graphics, image processing, computational
intensity, and data which is spatial and/or geometric in nature,
whether 2-D or 3-D. This characteristic applies to all varieties
of CAE, page layout, scene simulation, broadcast animation,
geophysical interpretation, remote sensing, analysis, etc.

A general purpose processor is not appropriate for this class of
applications because it is not optimized for the commonalities
which exist. A single function accelerators is too narrowly
focused to serve this class well. An application accelerator is
the right strategy to improve performance in the interactive loop.

Accelerator Architecture to Pregerve Software Invesiment

Porting or modifying application software for use with a given
accelerator should only be done once. To insure that the software
investment is preserved, the target accelerator must be based on a
well though out architecture. The best architectures will allow
higher levels of integration and the inclusion of higher
performance processors in the future, Software developed for an
implementation can be used only until the implementation changes;
software developed for an architecture will have a lifetime
covering many implementations of the architecture.

The Appropriate Architecture

An best architecture for an applicaton accelerator addressing the
spatial/geometric/graphics/imaging class of problems is a superset
of architectures optimized for the applications in the class. This
means that the architecture must include data paths which allow it
to access its local memory in 2-D or 3~D array modes, to 1ook like
an image processor with feedback data paths, to look like a
pipeline for traditional graphics operations, or to look like a
vectorized processor for analysis. Additionally, the accelerator
must have very fast access to data stored on disk or in CPU memory.

“6

P e e

The processing elements should be general purpose because of the
diversity of low level functions the product must address., Bit
slice based for maximum performance, the processors should include
both 32 bit integer and single and double precision floating point.
Lower precision is no longer acceptable in most high end
applications.

The accelerator should be based on a wide instruction word computer
(WIWC) for optimal performance. Figure 4 shows that this type of
architecture has significant advantages over both C1SC and RISC
architectures in that multiple high level language instructions can
be executed in each machine cycle. In comparison, multiple machine
cycles are required to execute one high level instruction in both
CISC and RISC machines. Discussions of efficiency which compare
the percent of compute cycles relative to I/0O cycles have no little
bearing here; this is a comparison of the cycles which are actually
performing the application processing. The wide instruction word
architecture is the clear winner.

High level language tools are essential to allow the developer and
user to easily move application software to the application

accelerator.

MACHINE # HLL # MACHINE| # CYCLES/ | HLL INSTR/
TYPE INSTR INSTR MACH INSTR CYCLE
CISC 1 1 N 1/N
RISC 1 N 1 1/N

WIWC N 1 1 N

Figure 4. Performance comparison of processor architectures.

THE FUTURE '

Based on the requirements and trends outlined above, the
application accelerator of the future will locally handle all parts
of the application processing in the interactive loop except the
small portion directly involved in transferring user input to the
accelerator.

The accelerator will use very high speed external busses. These
busses will allow it fast access to data on disk, data in the CPU,
and data on other accelerators.

The accelerator itself will be a multiprocessor architecture for
maximum performance. Internal busses between processors will be
very fast and very wide. For super performance, multiple
accelerator configurations can be formed using the external busses.
High level language support and optimizing compilers will make all
the power of the processors available to the programmer.

The combination of multiple processors and flexible, high speed
busses make a system which is software reconfigurable into a
processing structure optimized for a specific application.
Performance levels rivaling function accelerators will be achieved
through very high performance processing elements and the
"superset” nature of the accelerator architecture, Many more
applications will fall into the category of interactive.

“7

REFERENCES

England, Nick, "A Graphics Systems Architecture for Interactive
Application Specific Display Functions," IEEE Computer Graphics
and Applications, 6(1), Jan.1986, pp.60-70.

Van Hook, Tim, "Advanced Techniques for Solid Modeling," Computer
Graphics World, 7(11), Nov. 1984, pp.45-54.

van Hook, Tim, "Real-Time Shaded NC Milling Display,” Computer
Graphics (Proceedings of SIGGRAPH '86), 20(4), Aug. 1986, pp.
15-20.

REFERENCES

England, Nick, "A Graphics Systema Architecture for Interactive
Application Specific DPisplay Functions,” IEEE Computer Graphics
and Applications, 6(2), Jan,1986, pp.60-70.

Van Hook, Tim, "Advanced Techniques for Solid Mocdeling,” Computer
Graphics World, 7(11), Nov. 1984, pp.45-54.

van Hook, Tim, "Real-Time Shaded NC Milling Display,” Computer
Graphics (Proceedings of S1GGRAPH '86), 20(4), Aug. 1986, pp.
15-20.

