Sun Microsystems, Inc.

4

Qe

TAAC-1 Application Accelerator
Technical Notes

Architecture &
Application Development

Contents

1. Development of the TAAC-1 Processor

1.1 Design Criteria for the TAAC-1 Processor
1.2 Processor Architecture

1.3 Display Controller Architecture

14 Programming Tools

1.5 Using the TAAC-1

1.6 Results

2. Programming the TAAC-1

2.1 Program Structure

22 TAAC-1 Memory Usage

2.3 TAAC-1 Data Communication
24 Window Management

2.5 Program Development

2.6 Makefile Organization

3. TAAC-1 Graphics Library

3.1 Transformation Functions

3.2 Clipping Functions

3.3 Shading Functions

34 Rendering Functions

3.5 Graphics-Related Functions in the Miscellaneous Control Function Library

4. TAAC-1Image Processing Library

4.1 Point Functions

42 Geometric Functions

4.3 Functions for Statistical Analysis
44 Functions for Fourier Analysis
45 Morphologic Functions

4.6 Transformation Functions

4.7 Utility Functions

5. TAAC-1 Volume Rendering Toolkit

5.1 Cubevu
52 Raywvu
5.3 Cloudvu

6. Other Available Technical Notes

Note: Please send comments or questions about this document to:

Application Accelerator Marketing

Sun Microsystems, Inc.

P.O Box 13447

Research Triangle Park, N.C. 27709-3447

(=R CRE RV R

10
12
13
14
16
17

18

19
20
20
20
21

22

22
23
23
23
24

25

25
25
26

27

1.0 Development of the TAAC-1 Processor

1.1 Design Criteria for the TAAC-1 Processor

The TAAC-1 is an applications accelerator. A highly programmable device, it is designed to make an
entire class of applications run faster, not just to speed up a few selected functions. It offers full color
display capability, but for tasks that require more processing complexity than a traditional image processor or
graphics processor. It also has the floating-point performance of an array processor, but with more
flexibility. Thus, it is more optimized (and offers more performance) than a general purpose CPU, but is not
so highly optimized that all flexibility is lost.

The TAAC-1 was designed for applications involving spatial or geometric data sets. These
applications include high-quality graphics, image processing, and analysis. The design of the TAAC-1
architecture took into account the processing requirements of these applications.

1) Large amounts of data are processed.

2) The data is often structured in 2-D or 3-D arrays.

3) Both integer and floating point is needed.

4) Both vector and scalar processing is needed.

5) Direct display of results is often needed.

6) The processing algorithms are constantly changing so ease of programming is important.
7) Interactive processing is required.

These considerations led to the following features of the TAAC-1:

1) A large amount of memory (8 MByte)

2) Enhanced access to 2D and 3D arrays of memory
3) Integer and floating-point processors

4) Vector and random access to memory

5) Display capability from memory

6) Separate instruction memory

7) Low latency, non-pipelined design

8) Memory-mapped into VME bus

9) C language compiler

In developing a product with these goals, a constant awareness of available technology and market
requirements were blended as well. In the case of the TAAC-1, two new technologies were crucial.

Processor technology - Several firms have recently introduced very high performance 32-bit processors that
are extensions of the bit-slice (or horizontal) architecture. These families feature high speed (100 nsec or less
cycle time), floating-point as well as integer parts, large register files, and multiple I/O ports. The TAAC-
1 uses the Texas Instruments 88XX family of processors. This family was selected after hand simulating
execution of key algorithms.

The 88XX family has numerous attractive features.

« It is an extension of a known 8-bit family (74AS888,74AS890)

» Its power consumption is low compared to alternatives.

« TT has several IC technologies available, with some parts already moving from AS to
CMOS.

» The 88XX performance is excellent and it has a high data throughput.

» The parts are not internally pipelined and have a horizontal as opposed to integrated
structure .

Memory technology - The TAAC-1 uses two types of memory: videco RAM and static RAM. Video RAM

el Lot digs Lo

chips are dual-ported dynamic RAMs, which have very high serial access rates on the second port. They are
typically used to provide video rate data for display refresh. The second port can also serve as a very high
bandwidth port for vector processing. That is, arrays of floating-point numbers can be accessed for number
crunching as well as pixels for display. The memory was divided into two banks with 400 Mbytes/sec vector
access to each.

The second element of memory technology involved high-speed static RAMs (SRAMs) for instruction
storage. The TAAC-1 is designed with a 16K x 200 bit instruction memory using 50 SRAM chips. The
SRAMs made possible a very-long-instruction-word (VLIW) architecture. With it, multiple functional
units are controlled by each word. There are 26 different fields within the 200-bit-wide instruction.

The combination of VLIW architecture with non-pipelined low latency parts provides very-high scalar
performance, and the high-memory bandwidth yields high vector performance.

LARGE VIDEO
MEMORY ; DISPLAY
VECTOR
DATA
ACCESS | qmmmmmie-| PROCESSO
ﬂ CONTROLLER OCE R
RANDOM DATA +
INSTRUCTION
RAM
SUN VMEBUS t

Figure 1. TAAC-1 Architecture

12 Processor Architecture

The processor section of the TAAC-1 consists of multiple functional units connected by multiple buses. The
functions performed by each of the units and the sources and destinations of the buses are controlled by fields
within the 200-bit-wide instruction word.

The processor architecture was developed with two goals. The first was for application code to run as fast as
possible. The second was for compiler development to be reasonably straightforward.

A number of algorithms common in the targeted applications were hand-simulated to refine the architecture.
The purpose of this exercise was to reduce inner loops to a single instruction, thus providing the same
performance that might be expected from dedicated hardware. Two integer ALUs were included; this meant
one could be dedicated to address calculations. The integer multiplier/accumulator (MAC) was also included
for address computation as well as integer data processing. This architecture kept the free integer ALU and
the floating-point unit supplied with a constant flow of data, an important design goal.

The look-up tables (LUTs) serve two purposes. Seed values for Newton-Raphson iteration to compute
reciprocals (for division by multiplication) and square roots are provided by a pre-programmed LUT. A user
loadable LUT is used for image processing or histogram accumulation.

VECTOR DATA CONSTANTS

Y Y

\ Y

REGISTERS+ | | REGISTERS+ FLOATING INTEGER ARRE LOOKUP
INTEGER INTEGER POINT MULTIPLIER/ gmlﬁ TABLES
ALU ALU UNIT ACCUM

A

‘ !
ADDRESSING

RANDOM

DATA

Figure 2. TAAC-1 Processor Block Diagram
Access essor:
The access processor helps keep data flowing through the processor. It performs two functions.

The first is to act as a smart memory-access controller. It ensures that the programmer is isolated from any
concern over memory timing. The controller portion also reduces access time to a minimum in a simple cache-
like fashion, so that accesses to nearby regions of memory are faster than arbitrary accesses.

The second function re-arranges and controls physical addresses. This allows programs to access memory in
four ways.

1) Linear addressing 2M words (32 bits/word)

2) 2-D addressing 1024 x 2048 pixels (32 bits/pixel)

3) 3-Dslice addressing 32 ea. 256 x 256 slices (32 bits/pixel)
4) 3-D dice addressing 128 x 128 x 128 cube (32 bits/voxel)

The last two methods are ideal for 3-D volume data, such as a series of CT scans or a volume of seismic data.
Included within the 200-bit-wide instruction word are fields to control loading, incrementing, and
decrementing the X, Y, and Z addresses used in the different modes.

An additional circuit inhibits writes based on a comparison of the data to be written with the previously read
value. This technique is useful for visible-surface-display algorithms.

Memories:

As mentioned earlier, the memory is constructed using video RAMs for both display and vector processing
capabilities. An additional 16K x 32 fast static RAM is also included for stack-and global-variable storage.

el e e i el b

The datafimage memory has a random access port that is typically controlled by the access processor described
above. This port is fairly straightforward, except it is 128 bits wide (multiplexed to 32).

The memory is divided into two banks for vector-port purposes. Each bank has a 128-bit bi-directional bus
capable of speeds up to 400 Mbytes/second. The memory array consists of 256 each 64K x 4 video RAMs
(although the architecture is designed to accommodate larger memories in the future). In a typical operation,
one bank of memory feeds the display, while the other feeds the processor.

An expansion port reserved for future use is also included in the memory architecture, meaning there are a
total of eight 128-bit-wide buses in and out of the memory.

13 Display Controller Architecture

The display controller has two separate sections. One controls timing, the other converts digital to analog to
drive a color monitor.

The timing controller generates pixel clock, horizontal, and vertical signals locked to either an internal
oscillator or to an external sync signal. The pixel clock is generated by a phase-locked loop circuit with an
extremely wide range (10-100 MHz), but which is very precise (less than 1 nanosecond jitter). The
horizontal and vertical sync signals and auxiliary signals, such as video blanking, are generated from bit maps
loaded into RAMs addressed by counters. This arrangement gives a maximum amount of flexibility in
providing any desired timing characteristics.

FROM MEMORY

[' »| OVERLAY
//8 //8 //8 //8 CONTROL
\] Y Y Y
256 x 24 256 x 24 256 x 24 256 x 24
LUT LUT LUT LUT
DACs DACs DACs DACs
\] A RED Y
i y Y GREEN J
Y Y Y BLUE \
YvYyy
EXT. RED > > RED OUT
- VIDEO
EXT. GREEN > SWITCH » GREEN OUT
EXT. BLUE * Vv 2 T » BLUE OUT
DETECTOR

Figure 3. Video Output Block Diagram

The digital-to-analog section consists of four 256 x 24 look-up tables driving a total of twelve digital-to-
analog converters. Four converters are summed together on each of the red, green, and blue outputs. Again,
this design is intended to give as much flexibility as possible in a small amount of circuitboard space. For
example, by loading the color LUTs appropriately, a user can switch from a single-channel pseudo-color
display (256 colors from a palette of 16.7 million) to a full color display with 8 bits each of red, green, and
blue, plus an 8-bit overlay channel. The overlay circuit functions by turning off the normal display DACs
and turning on those belonging to the overlay channel. A bit mask allows user selection of overlay planes.
If any of the enabled bits of a pixel is on, then the overlay takes place for that pixel.

Included in the circuitry is a video switch used to insert video generated by the TAAC-1 into an image created
elsewhere. For example, a window can be created on the standard Sun color frame buffer and the TAAC-1
generated image is displayed in that window. The video switch circuit responds to a particular color on the
input. Whenever that color is detected the video output is switched so that TAAC-1 video is displayed instead
of the externally supplied input.

Sun-3 and Sun-4 workstations are each an ideal environment for a device like the TAAC-1. The internal VME
bus supports 32-bit data transfers and a 32-bit address space, the same as the TAAC-1. The TAAC-1 is
entirely memory-mapped into the Sun address space. Thus, the Sun processor can directly and with no driver
overhead read and write image/data memory, control registers, and LUTs. This arrangement allows the
TAAC-1 to be treated as just more memory.

14 Programming Tools

Because the TAAC-1 is a user-programmable accelerator, it has software tools in conjunction with the
hardware. The tools fall in four main areas.

1) assembler/compiler
2) compiler

3) debugger

4) libraries

The assembler, C compiler, and linker/loader for the TAAC-1 were developed by Bit Slice Software of
Waterloo, Ontario. The assembler works with separate mnemonic definitions for each of the fields within the
200-bit-wide instruction word. The linker and loader use object modules produced by the assembler. The C
compiler is a full implementation of the C language and produces assembly code as output. (Note: The usual
Unix /O and memory allocation routines are not supported on the TAAC-1). Several functions were added to
allow access to hardware features, such as X, Y, Z addressing, that are not readily expressed in C. These
special functions set fields within the compiler generated instructions. In addition, assembly language code
can be placed in-line with the C code.

Although a compiler cannot produce code nearly as efficiently as a skilled programmer using assembler,
having a high-level language compiler for the TAAC-1 is an absolute necessity. To begin with, it encourages
customers to port code to the accelerator, not rewrite code. Secondly, software development proceeds much
faster with such a tool. Developing new library routines, for example, is almost always done by testing the
algorithm in the standard Sun program-development environment, porting that code (through re-compilation)
to the TAAC-1, and then substituting assembly language code in crucial loops only.

The debugger allows the display and manipulation of values in all registers and memory locations. This
process can be seen in a window on the Sun screen. The programmer can for example, single step or set break
points because the hardware supports this type of operation. The single step mode offers single assembly-
language steps. The debugger gives symbolic reference to variables and program break points. A
complementary profiler provides a graphical display of instruction execution frequency as well as statistical
information.

Library routines fall into two classes: those that run on the Sun CPU, and those that run on the TAAC-1
processor. The first group comprises useful initialization and control routines and can be linked into user
programs running on the Sun. The second group consists of optimized routines for commonly used functions
in various applications. Libraries are available for graphics and image processing. A toolkit is available for
rendering volumetric data. These libraries are described later in this document.

1.5 Using the TAAC-1

In porting an application or developing a new one with the TAAC-1 accelerator, two steps must be
followed. The first is to identify and break out portions of the application to be moved to the TAAC-I.
This must be done since the TAAC-1 cannot make any system calls. These separate modules can then be
compiled using the TAAC-1 compiler.

The application programmer must then modify the main routines to load data to the TAAC-1 (from memory
or disk), start the TAAC-1 portion(s) of the application, and look for results. These host routines are
compiled using the normal Sun compiler. At run time, the two sets of object modules are loaded and
executed, one in the TAAC-1 and one in the Sun CPU.

TAAC-1 software is designed for dedicated single-task operation which complies with the general modus
operandi for users needing an accelerator. No multitasking control software has been written for the TAAC-1.

1.6 Results

The table below shows results from some experimental programs run using the TAAC-1.

Sun-3/160 - - Sun-3/160+ TAAC
Ray Tracing 30 min. 30 sec.
2D FFT Routines 8 min. 8 sec.
Adaptive Histogram Equalization 6 min. 4.5 sec. -

Library routines for graphics operations give the following results.

3-D transform 312,500 per second

3-D vectors 112,000 per second

3-D polygons 15,000 per second
(Gouraud shaded & Z-buffered)

This level of performance is generally associated with hardwired, limited-function hardware rather than a
fully programmable computation accelerator such as the TAAC-1.

20 Programming the TAAC-1

This section describes the general approach for developing applications on the TAAC-1 application accelerator.
It will focus on the type of program that has components running both on the host Sun workstation and on
the TAAC-1 - one that involves communication between, and synchronization of, these separate processes. It
discusses dividing tasks between the two processors, communication, synchronization, window management,
memory allocation on the TAAC-1, and C software development.

The TAAC-1 Application Accelerator: User Guide contains more information and goes into much greater
detail about most issues described below

2.1 Program Structure
2.1.1 Dividing Tasks between the Sun and TAAC-1

Initially, one must assign portions of the program to run on the host Sun and porﬁon$ to run on the
TAAC-1. The table below provides general guidelines for these assignments.

Sun Modules TAAC-1 Modules
« Disk I/O routines « Compute intensive routines
« User interface routines « TAAC-1 application libraries
» Host system libraries « TAAC-1 system libraries
« Host TAAC-1 libraries « Image generation and manipulation
« Window management routines routines

As of this writing, TAAC-1 software does not support standard J/O routines. Furthermore, the TAAC-1 is a
slave processor and cannot write to the Sun. Therefore, all reading and writing of data from and to the TAAC-
1 is done by functions in the Sun routines.

The diagram below gives a conceptual view of the structure of programs which use the TAAC-1.

Sun CPU Program TAAC-1 Program
Application Program —_ Application Program
main() main()

application code application code

User User
Written Written
Libraries | Functions

Sun User User
Libraries | Written Written
Libraries | Functions

User Written
Software

Sun Delivered
Software (w/ source)

10

2.1.2 Synchronizing Processes

The host Sun and TAAC-1 processes are asynchronous. One typically uses a simple handshaking protocol for
synchronizing the two processes. The figure below illustrates one possible organization for the handshaking.

Note that the ioflag is in TAAC-1 memory. The TAAC-1 process merely tests and/or assigns to a variable
name. The host Sun program must read and/or write values to the associated address on the TAAC-1 (more on

this below).

In this example the handshaking is done by clearing and setting a flag. It is also possible to assign different

values to that flag as a parameter to the host or TAAC-1 program.

Host Sun Process
Open and initialize the TAAC-1
Load and begin TAAC-1 program
Write initial data to TAAC-1
Loop until quit {

Set (write) TAAC-1 handshake
flag

Wait until TAAC-1 handshake flag
is cleared (read TAAC-1)

Execute host Sun routines

(read processed data from TAAC-1)
(read window input)

(write interactive data to TAAC-1)

} End Loop

~

\

/

N

-

o

TAAC-1 Process

Local initialization
Clear local handshake flag
Loop forever {

Wait until handshake flag set

Execute TAAC-1 routines
(user written routines)
(TAAC-1 library routines)

Clear local handshake flag

} End loop

To further illustrate this synchronization technique, the program organization described above is duplicated
below using program fragments with the appropriate TAAC-1 library routines. (In this example, as in most

TAAC-1 demo software, the handshake flag is ioflag.)

11

Host Sun Process TAAC-1 Process

#include <taacl/taio.h> #include <taacl/builtin.h>
#include "taacfile map.h"
int ioflag= 0;
main() {

TA_HANDLE *tah; main() {

if ((tah= ta_open())== NULL) {
printf ("error opening TAAC");
exit (-1); while (1) {
}

if(ta_init (tah)==TA_FAILURE) { while (ioflag==0) ; /* wait
printf ("error on TAAC init"); until set */
exit (-1);
}

if (ta_run(tah, "taacfile.abs")== ioflag= 0;

TA FAILURE) {
printf ("error on ta_run"); } /* end while 1 */
exit (-1);
} } /* end main */

ta_write(tah, &hostvar,
sizeof (hostvar), TC_taacvar);

while (!done) {

ioflag= 1;
ta_write(tah,&ioflag,sizeof
(ioflag), TC_ioflag):;

22 TAAC-1 Memory Usage

Variables used in TAAC-1 programs may be assigned memory in:
» registers (ALU RC or RD) — 64 registers in each ALU
« scratchpad memory (SRAM) — 16K words
« data/image memory (DRAM) — 2M words

ALU Registers
Frequently-used variables should be placed in registers. This significantly reduces the time for variable
accesses. Because of the large number of registers available, entire transformation matrices or convolution

kernels can be stored in register variables. Designation of register variables is done using the standard C
notation:

register datatype variablename;

12

One can also designate the registers of a particular ALU or the actual register. For example:

register RD integer x;/* specifies a register of the RD alu */
register float y @2;/* specifies register #2 (in RC) */

SRAM

SRAM holds the C stack as well as user-defined global and static variables (which are not specified to use
other memory types). Access to this memory is slower than to registers but faster than to DRAM. This is
the default location for all global and static variables. Care must be taken not to overwrite the C stack with
global or static variables that are too large. '

DRAM

DRAM should be used for images and very large data structures. An example of a DRAM variable
declaration is:

DRAM float z[1000];

Note that this does not specify where in the DRAM the variable is to be located. The linker will do this
memory allocation; however, one must specify to the linker which portions of DRAM are available for its
memory allocation (This is to prevent the linker from using memory being allocated by the programmer for
images or other data.). A command line option of the TAAC-1 linker specifies block(s) of DRAM which are
available to the linker. As an example, to designate two megabyte blocks as available for DRAM variables,
one at 0x80000 and one at 0x180000 , one would use the linker command line option shown below:

talinc -d 0x80000 Oxbffff -d 0x180000 Oxlbffff foo.obj
See the manual entry on the TAAC-1 linker for more information.
The programmer may also access DRAM more directly by specifying a pointer to an actual DRAM memory

address or by using the TAAC-1 compiler’s builtin functions to access memory in 1-D, 2-D or 3-D modes.
Both of these approaches are discussed in the user’s manual.

23 TAAC-1 Data Communication
Reading/Writing Variables in TAAC-1 Program

TAAC-1 image/data memory is mapped to the Sun virtual memory space. As a result, transfer of data
between the Sun and TAAC-1 is straightforward. Utility programs and library routines have been provided to
make it simple.

In order to read or write a variable in a TAAC-1 program, one must have the address of the variable in
TAAC-1 memory space. To get this information the variable must be made global (see the variable ioflag in
the TAAC-1 program fragment above). When TAAC-1 programs are linked the names and addresses of all
global variables are written to a .map file. The entry for ioflag in the .map file might look like
SY ioflag 0x30000000

This is the address of the variable ioflag in SRAM (static ram) memory. (See the manual for more on the
different types of TAAC-1 data memory). To simplify the usage of this information there is a utility
program, tamakdef, which reads a .map file and produces a .h file whose entry for ioflag might look like

#define TC_ioflag 0x30000000

13

By including this .h file in one’s host program the address of the variable ioflag (or any global variable) is
defined to be the variable name prefixed with TC_ . One can then use any of the host library memory access
routines (ta_read(), ta_read_noinc(), ta_read2d(), ta_write(), ta_write_noinc(), ta_write2d()) to read or
write this variable.

More Direct Access to TAAC-1 Memory

It is sometimes desirable to avoid the relatively small overhead of the TAAC-1 library read/write routines.
For example, if one is reading a large file from disk one would want to provide a destination address in
TAAC-1 memory to avoid the two step process of writing to Sun memory and then to TAAC-1 memory. The
TAAC-1 host library has two routines for this purpose: ta_map() and ta_use_map().

The TAAC-1’'s VME interface slave mode register (SMR), which specifies the particular TAAC-1 memory
type that is addressable from the Sun, is set by ta_use_map. It is used in conjunction with ta_map() which
returns the Sun virtual memory address for a specificd TAAC-1 memory address. For example, the
following code fragment illustrates reading data from disk and writing it to the beginning of Bank B in
TAAC-1 video memory (TAAC-1 address 0x200000).

(assume TAAC-1 is open, initialized and handle is tah)

#define NUMINTS 1000
#define TAACDEST 0x200000

{

int *taacdestptr;
FILE *fp;

char *filename;

if ((taacdestptr= ta_map(tah, TAACDEST))==NULL)

exit ();

if(ta_use_map(tah, TAACDEST)==TA FAILURE)
exit();

if(((fp=fopen(filename,"r")) == NULL)
exit();

if((fread(taacdestptr, sizeof (int), NUMINTS, £p)) !=NUMINTS)

exit () ;

} N
Note that ta_use_map() must be called each time the slave mode register is changed (ie. if a ta_read() or
ta_write() is called). These routines can also be used with the address of a variable listed in the .map file as

discussed in the section above. We generally recommend the use of the read/write routines provided with the
library instead of these lower level routines.

24 Window Management

To create a window displaying part of the TAAC-1 frame buffer one must do the following (not neccessarily
in this order):

« create a window of the desired size and at the desired screen location
« fill the window with the rgb values used for TAAC-1 keying

14

—— e &

« communicate the screen location of the window to the TAAC-1
» specify the portion of the TAAC-1 frame buffer to be displayed
« specify the video parameters for mixed Sun and TAAC-1 video

Creating a window of the proper size and location is a basic Sunview function and will not be discussed here.
(Alternatively, that function can be provided by any window system and still interface with the TAAC-1
routines). The TAAC-1 host library includes routines providing the other functions. The key routines are

described below.

« ta_get_insert_color() - reads the TAAC-1 keying color; use the rgb values returned as the color
for the window where the TAAC-1 video is to be displayed.

« ta_set_window() - sets the location and dimensions of the TAAC-1 video window in screen
coordinates (pixels). If the view of the TAAC-1 frame buffer is to remain constant as the
window is moved, this function should be called to reset the window parameters each time
the window’s screen location is changed.

« ta_set_view() - sets the 2-D memory location (pixel coordinates) that is to be displayed as the first
visible pixel in the upper left corner of the displayed video.

o ta_set_video() - sets the video parameters for mixed TAAC-1 and Sun video needed for this
window situation (it can also set Sun-only or TAAC-1-only video).

An example will further clarify the window location functions. Assume the part of the TAAC-1 frame
buffer to be displayed begins at the 2-dimensional address x=256, y=1024 in the TAAC-1 video memory and
is 512x512 (see the diagram below). The window with the key color is located at x=200, y=200 on the Sun
monitor and is also 512x512.

TAAC-1 Video Memory Sun Moniﬁor
0 512 0 1151

S

899

1024

To display this portion of TAAC-1 memory as described, the window calls would be:

ta_set_window(tah, 200, 200, 512, 512);
ta_set_view(tah, 256, 1024);

If the Sun window were moved 100 pixels to the right with the cursor, the TAAC-1 video memory displayed
would shift to x=612 (unless ta_set_window is called again). To keep the same memory displayed one would
have to call

ta_set_window(tah, 300, 200, 512, 512);

15

The hostlib directory (STAAC1/hostlib) contains additional unsupported routines for quick and easy set-up of
Sunview windows interfaced to the TAAC-1.

25 Program Development
Compile mble, Link d

The diagram below (from the TAAC-1 user guide) illustrates the development of software for the TAAC-1.
As with any C source code, the initial step is to compile and/or assemble (it is very unusual to begin with
assembly code for the TAAC-1). The resulting object files are then linked to create a load program (.abs
file). The load program is loaded at run-time by the Sun host program using the library routine ta_run(), or as
a stand-alone routine using the utility program rarun.

The linker also produces a .map file with variable and subroutine address locations. The utility program
tamakedef produces an include file from the .map file. The contents of the include file (described above)
simplifies data communication with the TAAC-1.

From TAAC-1 Assembly Code: From TAAC-1 C Code:

TAAC-1 Assembly Program TAAC-1 C Source Program

(file.asm) (file.tc)

Y Y

ASSEMBLE
e TAAC Object Program COA%%L E
tasm
(file.obj) ASSEMBLE
taac
Y
LINK Y
talink TAAC-1 Assembly Program
(file.asm)
TAAC-1 List File

(file.1st)

TAAC-1 Load Program
(file.abs) TAAC-1 Map File

(file.map)

\

Host C Program
#include "file_map.h"
ta_run(tahndl,"file.abs")

CREATE HEADER FILE
tamakedef

Y

TAAC-1 Map File
(file_map.h)

Linking the TAAC-1 Absolute File with a Sun C Program

One may also link a TAAC-1 absolute file with a C program, eliminating the (slight) inconvenience of having
a separate .abs file to load. The utility used is taabs20 which creates a .0 file from a .abs file. This file can

16

then be linked with other .o files.
When using this structure, ta_runm() is used with only the TAAC-1 device handle as an argument instead of
ta_run() which requires the .abs filename as an argument. All other steps in the process remain the same.

Pro

timization

There are a number of ways of enhancing program efficiency on the TAAC-1:

2.6

» The TAAC-1 has 128 general purpose registers. Using these for frequently accessed variables can
greatly increase the speed of data access. Similarly, data that is too large for registers but
small enough to fit in SRAM should use SRAM and not DRAM.

« The TAAC-1 compiler provides a number of built-in functions for fast access to specialized
TAAC-1 components. These functions are actually macros that provide direct access to the
lookup tables, the vector ports, and AC register reads and writes, without the overhead of

subroutine calls.

» TAAC-1 library routines perform mathematical operations, drawing functions, and control func-
tions. A number of these routines have been hand-optimized for efficiency. You may wish to
make a copy of a library routine and modify it to suit your own needs.

* Another way to enhance program efficiency is to insert in-line assembly code within a C program.
In-line code can be used to tighten inner loops, for example. The TAAC-1 profiler (available
fall, 1988) will help to identify the parts of a program that would benefit most from opti-

mization.

Makefile Organization

The makefile below is included to illustrate typical makefile organization for TAAC-1 software development
and can be used as a template. It is designed with the separate .abs file organization.

Host C-compiler

FLOAT =

DEBUG =

COPTS = -g

CFLAGS = $(DEBUG) $(COPTS) -fsingle

CLIB = -ltaacl

SLIB = -1lsuntool -lsunwindow -
lpixrect

#TAAC-1 C-compiler
TCC = tacc

TALINK = talink
TAMAKEDEF = tamakedef
TFLAGS = -c -fsingle
TLIB = -ltaacl

host object files
COBJ = fool.o foo2.0 foo03.0

TAAC-1 object files
TOBJ = foo4.0bj foo5.0bj foob6.0bj

foo: foo.abs $(COBJ)
$(CC) $(CFLAGS) -o foo $(COBJ)
$(TLIB) $(SLIB)

foo_map.h: foo.abs foo.map

17

$ (TAMAKEDEF) foo.map foo_map.h

foo.abs: $(TOBJ)

$(TALINK) -m foo.map $(TOBJ)
$(TLIB)

$ (TAMAKEDEF) foo.map foo_map.h

$(COBJ) : foo.h

$(TOBJ) : foo.h

fool.o foo2.0 foo3.0 foo4.o:
foo_map.h

.SUFFIXES: .tc

-0 $@

.obj .abs
.obj.abs:
$ (TALINK) -m $@.map -o $@ $< $(TLIB)
.tc.obj:

$(TCC) S$(TFLAGS) $<

.C.0:

$(CC) $(CFLAGS) -c $< $(CLIB)

$ (TOBJ) :

30 TAAC-1 Graphics Library

The TAAC-1 graphics library provides a set of low-level routines that run on the TAAC-1 to perform com-
mon 2D and 3D graphics operations. The library routines may be used as delivered or customized by the user
to fit specific applications. The delivered source code is complete and well documented so that the routines
may be easily extended.

The graphics library consists of several categories of routines: transformation, shading, clipping, and render-
ing. These routines are intended to be a low-level interface — some users will want to construct higher-lev-
el primitives using these routines as building blocks. Many of the routines access a structure called a state
table, which provides a central control block for most of the graphics subroutine calls. Multiple state tables
can be used to provide fast and easy context switching (e. g., multiple rendering modes such as wireframe and
Gouraud shaded polygons). Note: These routines are callable only from programs running on the TAAC-
1; they are not host callable!

This section contains a matrix that details the functionality available in the library and a list and short
description of each of the routines that make up the categories within the library. The document also contains
a list of the graphics-related functions that are in the TAAC-1 miscellaneous control function library. These
provide control of basic video functions such as color lookup tables and overlays. Mathematical routines for
trigonometric functions, square root, reciprocal, etc. are provided in the TAAC-1 math library and are not
covered in this document

18

TRANSFORMATION AND CLIPPING

2D 3-D homogeneous 3-D non-homogeneous
Transform t_xform2d t_xformh t_xformnh
t_xform3x4
Vector clip t_vclip2d t_fastvcliph t_fastvclipnh
Polygon clip t_pclip2d t_pcliph t_pclipnh
t_fastpclip2d t_fastpcliph t_fastpclipnh
t_porthoclip
Project t_proj2d t_proj t_proj
Matrix Multiply t_mat4mul t_mat3mul
SHADING
Pseudocolor t_pseudo
Full color t_fastshade
_RENDERING
2D 3-D Pseudocolor 3-D Full color
(hardware z-buffer) (software z-buffer)
Lines t_line2d t_linep t_linet
t_line
Antialiased lines t_aaline2d t_aalinep t_aalinet
t_aalinep2d
Antialiased shade-
interpolated lines t_dcline2d t_dclinet
Wireframe polygons t_poly2d t_poly t_poly
Flat-shaded polygons t_poly2d t_poly t_poly
Gouraud-shaded 3
polygons t_poly t_poly
Text t_rasttext
t_rasttextbg
Circles t_circle
Rectangles t_rect
BitBlt t_blit
Objects t_obj t_obj
t_objnh t_objnh

31

These functions apply a spatial transformation to an input vertex list to produce an output vertex list. The
transformation is specified by a user generated transformation matrix. The projection functions t_proj and
t_proj2d provide simple ways to convert from modeling space to screen space and output vertex coordinates in
the format required by the rendering functions. Two square matrix multiplication routines are also provided

Transformation Functions

to facilitate concatenation of matrices.

Name

t_mat3mul
t_mat4mul
t_proj
t_proj2d
t_xform
t_xformh
t_xformnh
t_xform2d
t_xform3x4

Description

3x3 matrix multiply

4x4 matrix multiply

project 3-D vertex list

project 2-D vertex list

transform vertex list

transform 3-D homogeneous vertex list
transform 3-D non-homogeneous vertex list
transform 2-D vertex list

transform 3-D non-homogeneous vertex list

19

32 Clipping Functions

These routines process the input list of vertices to produce an output vertex list that has been clipped. Some
of the polygon clippers support optional clipping of vertex colors and/or vertex normals. Unless otherwise
noted, clipping is done in floating point in world space.

Name Description

t_fastpcliph fast clip polygon (homogeneous)

t_fastpclipnh fast clip polygon (non-homogeneous)

t_fastpclip2d fast clip 2-D polygon

t_fastvcliph fast clip vector list (homogeneous)

t_fastvclipnh fast clip vector list (non-homogeneous)

t_pcliph clip 3-D polygon (homogeneous). Optionally clips vertex colors and vertex normals.
t_pclip2d clip 2-D polygon

t_pclipnh clip 3-D polygon (non-homogeneous). Optionally clips vertex colors and vertex normals.
t_porthoclip screen space clip to arbitrary orthogonal planes

t_vclip2d clip 2-D vector list

33 Shading Functions

The shading functions take as input a list of vertex normals and lighting model information from a state
table. The dot product of each input normal and the light source vector is formed. This intensity value is
then combined with the color obtained from the state table or the input vertex color list and the results writ-
ten to an output list.

Name Description
t_fastshade fast shade vertex list (full color) with optional vertex colors
t_pseudo shade vertex list (pseudocolor)

34 Rendering Functions

The rendering functions take input lists of vertices and color information and draw to image/data memory.
These functions include line, polygon, circle, text, and rectangle primitives.

Name Description

t_aalinep draw 3-D antialiased line (pseudocolor)

t_aalinet draw 3-D antialiased line (full color)

t_aaline2d draw 2-D antialiased line (full color)

t_blit rectangular area bltblt

t_circle draw unfilled 2-D circle

t_dclinet draw 3-D depth-cued antialiased line

t_dcline2d draw 2-D depth-cued antialiased line

t_erase fast rectangular area erase

t_line draw 2-D line

t_linep draw 3-D hardware z-buffered line

t_linet draw 3-D software z-buffered line

t_line2d draw 2-D line

t_obj render 3-D object with homogeneous coordinates
t_objnh render 3-D object with non-homogeneous coordinates
t_poly render 3-D polygon

t_poly2d render 2-D polygon

t_rasttext draw raster text

t_rasttextbg draw raster text with background

t_rect draw rectangle

20

35

Graphics-Related Functions in the Miscellaneous Control Function Library

Name
t_get_alphafill
t_get_bitmask
t_get_bitmask_id
t_get_bitmask_mode
t_get_blink_mask
t_get_btcommand
t_get_channel_select
t_get_colormap
t_get_overlay_colors
t_get_overlay_mask
t_get_read_mask
t_get_rgbfill
t_get_view
t_set_alphafill
t_set_bitmask
t_set_bitmask_id
t_set_bitmask_mode
t_set_blink_mask
t_set_btcommand
t_set_channel_select
t_set_colormap
t_set_overlay_colors
t_set_overlay_mask
t_set_read_mask
t_set_rgbfill
t_set_view

Description

read hardware fill state in channel 3 (alpha)

read the current 32-bit DRAM write mask

return the current bitmask id

retum the current bitmask mode

read current blink mask for the selected channel

read command register state of the selected DAC channel
read display state of all four video channels

read the rgb colormap for the selected video channel’s DAC
read DAC overlay colors in selected channel

read the 8-bit overlay enable mask

read current readmask for the selected channel

read hardware fill state for channels 0,1,2

read address of first displayed pixel

set hardware fill state for channel 3 (alpha)

set the 32-bit DRAM write mask

set current bitmask id

enable/disable bitmask mode

set current blink mask for the selected channel

set command register state of the selected DAC channel
set display state of all four video channels

set the rgb colormap for the selected video channel’s DAC
set the DAC overlay colors in the selected channel

set the 8-bit overlay enable mask

set current readmask for the selected channel

set hardware fill state for channels 0,1,2 (red,green,blue)
set address of first displayed pixel

21

40 TAAC-1Image Processing Library

The TAAC-1 image processing library provides a basic set of TAAC routines that can be used as delivered or
extended to a specific application. Each image processing user tends to have very specific library requirements
tailored to a particular application. The delivered source code will be complete and well documented so that
it may be easily extended by the user to address a specific application.

The library is organized into several sections: point functions, geometric functions, information functions, and
transform functions. Point functions are those functions that produce an output pixel as a function of a
corresponding point in the input image or images (e.g., add, blend, and). Geometric functions are those
functions that produce an output pixel based on some spatial transformation of an input pixel or some number
of input pixels (e.g., zoom, reflect, control point warping). Functions for statistical analysis produce data
about an input image or subimage (e.g. minimum and maximum, histogram). Transformation functions
produce an output pixel intensity based on a region of pixel input intensities (e.g., fft, convolution).
Functions for Fourier analysis are those functions used to process and examine image frequency content.
Morphologic functions are those functions used to highlight or extract structures or specific features within
an image. TAAC-1 utility functions are those functions that make use of the special capabilities of the TAAC-
1 processor (e.g., read, write, lookup table). Note: These routines are callable only from programs
running on the TAAC-1; they are not host callable!

For each function the user may specify the image datum by indicating a field width and affect (size of image).
File 1/O and user interaction (roam, pan, pick, contour, etc.) are not specified and are assumed to be handled by
other library routines. Graphics routines such as line and polygon drawing, transformation, and pixel filling
are assumed to be addressed by the graphics library.

4.1 Point Functions

All of the point functions generate an output pixel as a function of a single input pixel or pair of input
pixels at corresponding locations in the selected image regions. The input regions may overlap each other
and/or the output region may overlap either of the input regions. All point functions operate on two-
dimensional regions.

Function Name Description

add sum two image regions .

addconst two’s complement addition of image and constant

and bitwise and of two image regions

blend blend the red, green, and blue pixel values based on alpha
divide signed divide of two image regions, limited to 12-bits max
invert compute image positive/negative from negative/positive
lin_transf perform linear transformation of form ax + b

multconst multiply image by constant

multiply signed multiply of two image regions

nand bitwise nand of two image regions

nor bitwise nor of two image regions

not bitwise logical inverse of an image region

or bitwise or of image regions

shift left and right shift of data fields

subtract subtract two image regions

udivide unsigned divide

umultiply unsigned multiply

xor bitwise exclusive or of two image regions

22

4.2 Geometric Functions

The geometric functions perform spatial transformation on two-dimensional input image regions.

F tion N D ipti
bicub_interp spatial interpolation based on bicubic estimation
control 2-D spatial transformation using a control grid
interp bilinear interpolation zoom and contract
interp_rgb bilinear interpolation zoom and contract for rgb
reflect 2-D reflectioninx ory !
rotate2d 2-D rotation about image center

zoom2d 2-D magnification by pixel replication

43 Functions for Statistical Analysis

The information functions accept as input an arbitrary rectangular region of pixels and produce information
about the region (e.g., minimum, maximum, histogram).

Function Name iption
extrema determine minumum and maximum in image region for signed data
hist determine histogram in image region
moments mean and variance of image region
uextrema unsigned extrema
4.4 Functions for Fourier Analysis

The transformation functions produce an output pixel whose intensity depends on a region of input pixels.
This includes convolution and transform processing.

Function Name Description

bandpass band pass butterworth filter (frequency domain)

bandreject band pass butterworth filter (frequency domain)

conv_3x3 integer convolve

conv_5x5 integer convolve

conv_NxM integer convolve

fltconv_NxM floating point convolve

cmplx_fftld - 1-D floating point fast fourier transform (complex input)

cmplx_fft2d 2-D floating point fast fourier transform (complex input)

cmplx_ifftld 1-D floating point inverse fast fourier transform (complex input)
cmplx_ifft1d 2-D floating point inverse fast fourier transform (complex input)

fft_ 1d - 1-D floating point fast fourier transform (real integer input)

fft_2d 2-D floating point fast fourier transform (real integer input)

highpass high pass butterworth filter (frequency domain)

ifft_1d 1-D floating point inverse fast fourier transform (compressed complex! input)
ifft_2d 2-D floating point inverse fast fourier transform (compressed complex input)
log_spectrum compute log power frequency spectrum of fft

lowpass high pass butterworth filter (frequency domain)

median_filter median window filter

user_filter user specified filter (frequency domain)

4.5

4.6

4.7

Morphologic Functions

Function Name Description

connect segment image based on connected components

contour trace a contour of points based on label image

dilate function performs edge "thickening” operations

erode function performs edge "thinning" operations

threshold set image pixels based on specified threshold

uthreshold set image pixels based on specified threshold for unsigned data

Transformation Functions

Function Name Description

clahe interpolated contrast limited adaptive histogram equalization
histeq equalize histogram of image region

lut_transform transform an image via look-up table mapping

Utility Functions

read_lut read look-up table

write_lut write look-up table

50 TAAC-1 Volume Rendering Toolkit

The TAAC-1 volume rendering toolkit provides a set of programs for rendering volumetric data as well as
associated utility functions. The toolkit is applicable for a wide range of applications which have
3-dimensional data — medicine, earth resources, biochemistry, meteorology, fluid flow, etc. The programs and
functions come with complete, well-documented source code for integration into third party software or
extension by end-users requiring additional functionality.

The current toolkit consists of three rendering programs: Cubevu, Rayvu and Cloudvu, providing three
different rendering schemes. The three programs use a common data format and utility programs are provided
for data manipulation. Multiple data types are supported — single-parameter 8, 16, and 32-bit integer, multi-
parameter 8-bit integer and single-parameter 32-bit floating point. Rendering of data larger than can fit in
TAAC-1 memory is transparent to the user. The programs also interface with the 2-D image processing
routines for extended functionality.

51 Cubevu

Cubevu displays and manipulates the visible x, y, and z planes of an orthographics projection of 3-dimensional
data in real time. The user can, interactively, move an oblique (arbitrary) slice plane through the cube,
displaying the data in an interior portion of the volume. The plane is specified using “pitch” and “yaw” to
define the angle of the plane and “push” to determine how far the slice plane is pushed into the volume.
Cutting the volume with this slice plane has the effect of cutting away a portion of the cube, at any angle, to
expose the interior of the volume. Additionally, the portion of the volume data to be displayed may be
restricted along any of the 3 volume axes. These near and far clip planes for each of the 3 axes, together with
the arbitrary oblique clip plane effectively allow interaction with 6 orthogonal and 1 oblique slice plane.
Interactively clipping with these slice planes is non-destructive, the volume data is not altered. The volume
slice planes are generated by either point sampling or interpolation of the volume data for each pixel.

The user also has the capability to:

« specify aspect ratio and scale

« map data to pseudocolor or gray scale

« do intensity windowing

» change orientation of the cube

» do bilinear interpolation for orthogonal slices, trilinear interpolation for oblique slices

« apply a threshold function to the data, rendering only the voxels above the designated threshold
« move multiple slice planes through the cube, one of which may be oblique

« display a selected slice in a separate window for further, 2-D image processing

« record and playback sequences of images generated

Functions planned for the future include milling operations, extrusion clipping, and transparency among
others.

5.2 Rayvu

Rayvu does ray tracing of volumetric data. Rays are projected from the user specified eye point into the 3-D
data set. Along each ray, trilinearly interpolated samples from the original image slices are compared to user-
selected density thresholds. The different density ranges can be rendered as opaque or transparent and are
assigned colors. When a density threshold is crossed by a ray, a surface normal is calculated from the local
gradient and a light source shading model is applied.

The user also has the capability to:

« specify aspect ratio and scale

« specify lighting parameters

« "plug in" custom routines for ray generation, interpolation, shading, ...
« select among preview, fast, and high quality generation modes

Functions planned for the future include multi-parameter rays, successive refinement during image generation,
different rendering schemes, volume clipping/editing, and perspective views, among others.

53 Cloudvu

Cloudvu is a rendering program for point primitives. It’s input data is sets of points in 3-dimensional space.
The points can have an associated normal vector and/or an associated 3-bit or 8-bit pseudocolor value. The
program is capable of transforming and rendering 225,000 points per second.

Different display modes include:

« grey scale gradient

« pseudocolor gradient
* Z (depth) shaded

» Z shaded pseudocolor
» direct color display

26

6.0

#4

#5

#6

#7

#9

#10

#11

#12

#13

#14

#15

Other Available Technical Notes

Example of Porting Software to the TAAC-1
Incorporating the TAAC-1 into an existing program with examples of assembly code

Look-Up Functions for 12-Bit Images
Using the TAAC-1 programmable Look-up Table for 12-bit to 8-bit image processing

Volume Imaging with the TAAC-1
TAAC-1 performance in rendering volumetric data by slicing along a fixed axis or ray
casting.

The TAAC-1 C Compiler
Brief description of compiler features.

Application Acceleration: Development Of The TAAC-1 Architecture
Discussion of design criteria, architecture, and programmability of the TAAC-1 (largely
incorporated in this document).

VideoTape Recording with the TAAC-1
Technical issues in direct videotape recording of TAAC-1 video.

Programming the TAAC-1
Task division, communciation, synchronization of processes, window management, memory
usage and software development in using the TAAC-1 (largely incorporated in this
document).

TAAC-1 Image Processing Library
(Incorporated in this document).

Medical image processing on an enhanced workstation
TAAC-1 architecture, software tools, and 2-D and 3-D medical image processing and display
applications described.

TAAC-1 Graphics Library
(Incorporated in this document.)

TAAC-1 Software
Lists software provided for the TAAC-1 including C development tools, host library, and
TAAC-1 system, math, graphics and image processing libraries.

27

sun

microsystems

The Network Is The Computer ™

Corporate Headquarters European Headquarters Australia: (02) 436 4699 EUY(EC. Middle East, and Africa,

Sun Microsystems, Inc. Sun Microsystems Europe, Inc. ~ Canada: 416 477-6745 call European Headquarters:

2550 Garcia Avenue Sun House France: (1) 463023 24 0276 62111

Mountain View, CA 94043 31-41 Pembroke Broadway Germany: (089) 95094-0 i

415 960-1300 Camberley Japan: (03) 221-7021 Elsewhere in the world,

TLX 287815 Surrey GU15 3XD Nordic Countries: (08) 764 78 10 call Corporate Headquarters:
England Switzerland: (1) 82 89 555 415 960-1300

For U.S. Sales Office 0276 62111 The Netherlands: 02155 24888 Intercontinental Sales

locations, call: TLX 859017 UK: 0276 62111

800 821-4643

In CA: 800 821-4642
Specification subject to change witnout nouce

Sun Microsystems, Sun Workstation, and the Sun Logo are registered trademarks of Sun Microsystems, Inc. SPARC, Sun-3, Sun-4, Sun386i,
NSE, NFS, NeWS, The Network Is The Computer and ONC are trademarks of Sun Microsystems, Inc. UNIX is a registered trademark of AT&T.
All other products or services mentioned in this document are identified by the trademarks or service marks of their respective companies or

organizations.

© 1988 Sun Microsystems, Inc.
Printed in USA 6/88 FE181-0 7.5K

