< sun’

microsystems

TAAC-1 Application Accelerator:
User Guide

Part No: 800-2177-11
Revision A of 15 September 1988

Credits and Trademarks

Sun Workstation® is a registered trademark of Sun Microsystems, Inc.

SunOS™, Sun Microsystems™, SunView™, SunWindows™, and the combination of Sun with a
numeric suffix are trademarks of Sun Microsystems, Inc.

TAAC-1™ Application Accelerator is a trademark of Sun Microsystems, Inc.

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations.

Copyright © 1988 by Sun Microsystems - All Rights Reserved

No part of this work covered by copyright hereon may be reproduced in any form or by any means -
graphic, electronic, or manual - including photocopying, recording, taping, or by information storage
and retrieval system, without the prior permission of the copyright owner. Restricted rights legend:
use, duplication, or disclosure by U.S. government is subject to restrictions set forth in subparagraph
c.1.ii of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

Chapter 2
2.1.
2.2.
2.3.
24.
2.5.
2.6.
2.7.
2.8.
2.9.

Contents

Exploit ParalleliSm.......c..ccccouvvuiiiniiriiiiiincecee e,

Minimize

Latency ...ccooeeeveeceninieniiieceecee e

Support Varied Data Structurescoeveveeeeeeennn..

Allow Transparent Memory AcCessccovueeeennnee.e.

Avoid Data Bandwidth Bottlenecks.........ooovvuveveeeeeniin,

Approach Capability of Dedicated Hardware.................

Efficiently Execute C Programs...............coccecueveeuennn.n.

Provide High Level Language Compiler........................

Hardware Overview

TAAC-1 Description............cc.coevveennee..
Host VME Interface..........ccceeuuen......

Local BuS...oooovveevviiniiiiiaanaeaaan

Data/Image Memory

Program Memory..............ccuo........

Scratchpad/ Stack Memory

Control Register Memoryc.c...........

Memory Address Spacecoccevvveieviiiniceeiieeceeeneen

Processor

..

iii

XV

1-3
1-3
1-3
1-4
1-4
1-4
1-5
1-5
1-6
1-6

Contents continued

2.10.

2.11.

2.12.

2.13.

2.14.

2.15.

ALUs RC and RDcccooviiiiiiiiiiiiiiiiiiiiic e, 2-10
Multiplier/Accumulator (MA) ..o 2-10
Floating Point Processor (FP) ... 2-12
Barrel Shifter (BS) ...occoeociiiieeericeeeeeinen i 2-12
Miscellaneous Lookup RAM (LT) ..o 2-12
Lookup PROM (LU)...cccooiiiiimirmieniieieiee e 2-12
Buses and Data Paths.........cccoviiviiniiniiniiiinis 2-13
The E BUS...oooiiiee ittt erir e s e 2-13
The A and B Bus....cccoooiiieniiiniinecniiiciniiicienieen 2-13
The C BUS ..ooeiiee ittt 2-14
The D BUS ..iviiiieciie ettt e s 2-14
The F BUS...coiiiieiieeiececieniiceie st 2-14
Address REGISIEIS....ccouveeuiiiiiniiinniiiiiiiiiinee et sne e e 2-14
Address Immediate Register (Acccovivnniiiinninnnnnn. 2-15
Address Count Register (AC)coccoevviviinniiiiiiinniinnienn, 2-15
DRAM Mode Register (AM)....ccccoeeeiviniinnniinniinniiennnen 2-16
Miscellaneous Mode Register (MO)...c.cocevvvevniiiinnnnnne 2-18
VECLOT POTLS ..ottt e 2-19
Detailed Information: Data/Image Memoryc..cu.... 2-20
Linear (1D) Addressingccceeeeeecveennrinsiininiiinneenneen 2-20
Image (2D) AdAressing......cccoievvinniiniiinininiienienneennns 2-21
Volumetric (3D) Addressing.........cccceeeceniiiiiiiiniiininnnne 2-23
Video OUtPUL..ccuiriiriiiieeeeeerecre ettt srre b 2-24
Read Masks......cooirieiniieiiniciceciccrie e 2-25
Overlay/BlinK......c.cooeiiivinvinnniniieie e 2-25
Channel Selectoviiiiiiiiniiiiiccciiiiiin e 2-25
Scan Line Fill.....ccooooiiiiiiiiiiecceeeciieicnienee s 2-25
Video Keying into Sun Windowsccccocevviivninnenncnn 2-26
Detailed Information: Brooktree RAMDAGC:s................. 2-27

iv

Contents

continued

Chapter 3
3.1.

3.2.

3.3.

34.

3.5.
3.6.

3.7.

3.8.
3.9.

3.10.
3.11.
3.12.

TAAC-1 Programmingcoeeeveeemeeernnnn.
Dividing Tasks Between the Sun and TAAC-1..............
Synchronizing Programs...............coooovovevoooo
TAAC-1 Memory USage.........coovueeeeeeeoeeoeoooo
ALU REZISIETScecuveimiitireeeeeeeeeeeeesesooeoo

Reading and Writing Variables in TAAC-1

Programsccccoicmeicececeeeeeeeeeeeee
Using Host Library Read/Write Routines......................
More Direct Access to TAAC-1 Memory
Data TYPEScecuiueeiiriieeee et
Data Transferred from a Host Program
Structures Within TAAC-1 Programs...............o.oooo.......
Window Management.............oocoovemoveonooooo
Building a TAAC-1 Program...........cocooovovoovooooooo .
The taabs2o Uty ..c..oveeeveeeeeeeeeeeoeooo

Building and Running the Program
Example Programs: Introductionco........
Example Programs: Double-Buffering,

Channel-Bufferingo.ooocoooueveeemoeeoeooooo

Example Program: Overlay Mode.................cooooooooooo .
Example Program: Blink Modecooovovovvovoo.

Contents continued

Chapter 4
4.1.

4.2.
4.3.

4.4.

4.5.

4.6.
4.7.

4.8.
4.9.
4.10.
4.11.

The C Compiler (£ace) .oimeeninecniniiiinniniissiinees 4-3
TNLTOAUCTION . ..eevvienvierereeecene e e erbe s snes st e 4-3
TAAC-1 EXtENSIONS....vveereeeiriiiarretenesitese e s snseasianes 4-3
Other CoNnSIAETAIONSccveeerueerirrinrinieniesneesecsiiussanieans 4-4
tacc Command SYNTAXcovrierimientiieneneneisessiinneiinenees 4-6
Programming Preliminariescooviiiinneinicnns 4-7
INAITIES «oveeeeeeeeneeeeinsreeeneaesesmeassansaesasasssaessenessaeessssanssanns 4-7
CONSLANTS...euveeireeerrressreesseeessseessessaassanssesastesnnesisssassanss 4-8
EXPIESSIONS ..ecvvviiiiirsnsesessiesemessississss s e 4-9
Operator HIeTarchycoeeeeeniniiiiiiiiisieieines 4-9
Expressions Involving Structuresooeecnceinnes 4-10
Single and Double Precision. ... 4-10
Error DeteCtion....c.vocveeeeneeniiniiiiiie e 4-10
VATIADIES <ot eeeeeeee e et e s s et 4-10
DRAM Variablescooveeeevieininiiiiinieeeeenete s 4-11
Data TYPES coceeuveneeremriiririieseseseisiesees st 4-11
Optimizing Data Structure Definitionsccooveeieec 4-12
Machine-Dependent EXtensionscoccovveninnnininnences 4-13
TNItiAliZAION c.evveeeciiieeeree et ciane e sir e cnete st 4-13
Function DefInitionsooveeiiniiininnienirsie e 4-15
£aSt FUNCHONS ..covvvecieeeiieeieeetiisiie e siresne s sie e sis s s 4-15
The sTack_pc Storage Class Modifier.......ooiiiininnnn 4-15
FUnction PrOtOLYPES ...c..ccviiiiiarinienienentciensiiesiieisaneanees 4-16
Converting from Float to Double........ccccccveiiiiiiiiin 4-18
Declaring Global RegiSters.......ooovevviciiniiiiiniiniiiinee 4-18
Function Calls and Argument SizZe€ccoeeeneeiiiiunnnns 4-19
SHALEIMEIIS ...uveeceveeereeeiieereeeessaeerseeesessr e e essntssasssenasseasanes 4-19
Special Coding TeChniQUES........cvcviiiiiiiiiicicnicns 4-21
Switching Between Standard C and TAAC-1 C............. 4-22
RUN-TImME NOLES...ccvtiriereiiiriiriiniiir et snieesie s 4-22
Function Callscoeieienicniiiiinenesieeeineese s 4-23

vi

Contents continued

4.12.

4.13.

4.14.
4.15.
4.16.

Chapter §
5.1
5.2.
5.3.
5.4.

5.5.
5.6.

Chapter 6
6.1.

Chapter 7
7.1.

Register USAgeeuvuuruveaieeeeeeneeeeeooooooo 4-23
Non-Register Variables.............ocoooooiroooooo 4-23
C Stack FOrmato.uovuvuieeeeeeeeeeoooooooo 4-24
C Stack OVErfloW ... 4-25
The Function atof () ...eeweveeeeeeeeereeooeoooo 4-25
In-Line Assembler Code..........ocovomrereoooooo 4-25
In-Line Code Hintsooooeremremeroooo 4-26
Built-In Functionso..oouoooeeomoooooooo 4-27
Built-In Function Summaries.......................o....____ 4-28
Example Using Built-in Functions__. 4-31
The Include File builtin. b 4-33
The Include File taacdefs .h...oeorrrrooooooo 4-35
The Include File taregdefs .o 4-37

The Assembler (tasm).........ooueooremoooooooo 5-3
tasm Command Syntax...............coooemreoovooo 5-3
Using Assembler Commands..............o..ooooooooooo 5-3
Defining Constantscooovovoemoomooooo 5-4
Assembler Input File Format ... 5-4
LANCS.c.ooiteiiicteee oo 5-5
Numeric EXpressionsc.ooweoeeromoooooooo 5-5
Assembler DIr€CtiVesoewemrmrooroooo 5-6
SEZMENLS c.o..oooeeeei oo 5-8

The Linker (talink)....o.ooooooomooosooooooooo 6-3
talink Command Syntax............coeoorovoooo 6-3

The Object Librarian (ta1ib) ..o 7-3
talib Command SYntax..............ooomrooovooveooo 7-3

vii

Contents continued

Chapter 8
8.1.

8.2.

8.3.
8.4.

8.5.
8.6.
8.7.
8.8.

8.9.

8.10.
8.11.
8.12.
8.13.

Assembly Language........coveveeiiiinniininmincnns 8-3
The Processor and Instruction Word........oocevviniiiinnnnn 8-3
Default Instruction Wordcccoeiinenennniiiiiine. 8-6
Sequencer (SQ) INSIUCHIONS ...cvuiuiiiiiiiniiiiisieienees 8-6
Unconditional INStruCtioNS......cooviiiiimnetrneriieiiniiiniasiiees 8-6
Conditional JUIMIPSceeeriiirniinienmeceeesiiiiieriess s 8-7
Conditional Subroutine CallS........cominieieninniiiiiin 8-8
Conditional REtUINScocveeereiiiiiiiirniinese et 8-8
The Condition Code MultipleXer......ocooeiiiiininnnnen 8-9
TNEEITUDES «vevovcveveeesenerenessrassss e ssssis bbb 8-11
Condition COdeoeeeveeeeriiiiiiie et 8-11
Constant Data FIeldocceeviniinimniiinniniiiins 8-12
ALU (RC, RD) INStructions.......ccceveeevviinmnsnnsnssmmscssenees 8-13
SAD TFIELA oottt s 8-14
ALU/Shifter Operations.......ccoueererncriiiiiainnsesenecens 8-14
Operations on Selected Bytes ..o 8-17
Barrel Shifter (BS) INStructionsccceeeeeiinniniiiiiiens 8-18
Multiplier/Accumulator (MA) INStructions ...ccceeeeeeveneenn 8-20
Lookup Table (LU) INStUCHONScoovemimmiiiniesensneisienens 8-22
Floating Point Processor (FP) InStructionsccceceeeriiinnns 8-24
Double Precision Operationseeceeiveninniminsiiences 8-26
FP Status REZISET c..cucuiiviiiiiiiieinenint it 8-32
MEIMOTY ACCESS c.vvrvirirrerraiereseiesteuessisasssarssssssssssasssns 8-32
Random Access Using the AT Register.......cocevviniinninninn 8-32
Random Access Using the AC Registercococovivieininn. 8-33
Addressing Modescooiminmmeinninnniiiissics 8-34
Timing of Random Memory ACCESS.......ouvmmmmruecucunncs 8-36
Addressing Memory with the Vector Ports ... 8-38
DRAM Mode RegISIET ...c.ccoiiiiiiniiienicnnesiininiasssieeenne 8-41
Miscellaneous Mode RegiSter......ooierienieninniiiniiinnniins 8-42
DaAta FLOW ...ooviiiiciieeiieeeeeneeesteesncent s s ia s seeess s s ses 8-44

viil

Contents continued

8.14.
8.15.
8.16.
8.17.
8.18.
8.19.

Chapter 9

9.1.

9.2.

9.3.

94.

9.5.

9.6.

9.7.
9.8.

9.9.

Data Path ReStriCtions.cc.eveeviviiiieieeieeeeeeeeee e 8-44
Registered and Unregistered Pathsc.ccoevevveunnn.... 8-45
The A BUS ..o, 8-47
The B BUS ...veiiieieieee e, 8-48
The CBUS ..o e, 8-49
The D BUS ...ttt 8-50
The E BUS...ciiieieeieii e, 8-51
The F BUS ..ovieiiieiiiiinene et 8-52
UHIHES. ..o, 9-3
ras2taac, Write Sun Rasterfile to TAAC-1
MEMOTY ..ot 9-4
taabs2o, Convert .abs File to Sun Object File............... 9-5
Command SyNtax......ccoeveveeeireieerivieeeeeeee oo, 9-5
EXamplec.cvvieieininien e, 9-5
tachan, TAAC-1 Channel Selection TOOL.......ooevveeeennn. 9-6
Command SyNtax........ocoeeeeevereeerneiieeeeeeeeeeee oo e, 9-6
Functions Callsccooueimroieniiieeee e 9-6
taclear, TAAC-1 Clear ToOl.........ccccooevevueeemreeenennnn.. 9-7
Command SYNtax.......coeververernirieieeeeeeeeeeeee e, 9-7
tadeb, TAAC-1 Debugger..........ccoooviveniceneeean, 9-8
Command SyntaX..........coooooeeieeeveeeeeeereeeeeor, 9-8
USer INerfacecoeeieieeeeieriiieeeeeeeeee e 9-8
USAZE NOLES ..ottt 9-11
General Information.............c.cooovvveeveeeereeeeseeenn . 9-15
tainit, TAAC-1 Initialization TooOloovvvvevvieenn. 9-16
Function Callsccooimiiiiiiiceee e 9-16
taload, Image File Loader.......ccoovvvmomomeooo, 9-17
tamakedef, Include File Generatorccccoouvvn....... 9-18
Command SYNtax.........cocevieueiiiieeeeereeeeeeeeererereson . 9-18
tamon, TAAC-1 MONItOrcovviriiiieiieeeeeeeeeeeeeann, 9-19

ix

Contents continued

9.10.

9.11.
9.12.

9.13.

9.14.

9.15.

Commandscccveeeveeeeeiienitee et 9-19
Useful FUNCHONS ...ccvveiiieiiiie ittt sieeeniinee 9-20
taprof, TAAC-1 Profiler.......ccccovniinninnininianne. 9-22
Command SYNLAX......ccueeeeriiiriiiinriieee et 9-22
USET INEITACE ...ccvvevieieeecicciecne ettt 9-22
taread, read TAAC-1 Data/Image Memory 9-26
tarun, TAAC-1 Program Execution Tool...................... 9-27
Command SYNTAX.......coceeeruiniirriiiniiieiie et eecssennes 9-27
Function Callsccciiiiinninnirininniei it sieeeaeenns 9-27
tashow, TAAC-1 Show Tool.......cccevviviiiiinniniiininenn, 9-28
Command SYNLaX.....ccccveiriiiiiiiinieineeienie st 9-28
Interactive Commandscccoeveeinieiiniieininiieninieseceenns 9-29
tatool, TAAC-1 Tool........ ftentaeteeeeeaeeesaataa st brrrraaaaaaaans 9-30
Command SYNTAX.....c.ecueveruerierienineireireieeiestesie e esees 9-30
More on the —t OPtON.....coceeciiiiiiiiinie e 9-30
The Video Editor.......coocviiiiviiiiiniiiiiicei e 9-31
Seeing TAAC-1 Video in a Single-Monitor

CONfIGUIALIONc.ceuvevieiiiiiiiiiieiine et 9-33
Keying Setup: Single-Monitor Operation..........ccceceeueneee 9-34
Adjusting Video Parameterscoooiiinininicninincnnes 9-35
Windowing Library......cccivviiniiiiiieiencne 9-37
Seeing TAAC-1 Video in a Dual-Monitor

Configurationccoeiiivieniiniinniinieeeeie e 9-37
tatxt2o, Convert Text File to Sun Object File.............. 9-39
Command SYNTaX......ccceeeeereriineniiiinienine e eeees 9-39

Figure 2-1

Figure 2-2

Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10

Figure 2-11

Figure 2-12

Figure 2-13

Figure 2-14

Figure 3-1

Figures

MEMOTY ... 2-6
TAAC-1 Processor Architecture..................oooooo.o... 2-11
Format of AC Register Fields..............oooovooooi. 2-15
Sector Organizationcoooooeeeveeveooooooo 2-20
Sector Address Map...........cveeeeeoeeeemoooooooo 2-21
2D X/Y Address to Linear Address Mapping........... 2-21
Linear Addresses in a 2D Image Block 2-22
1D/2D Addressing Relationships.............................. 2-22
Sectors in 2D Image Space.............oo.ovooovoooooo 2-23

3D Index to Linear Address Mapping -

“Dice” MOAE ..o 2-23

3D Index to Linear Address Mappin;
““Slice’” Mode.....................
Brooktree Functional Block Diég
RAMDAC Configuration
Division of Tasks Between Host and

TAAC-T o, 3-4

xi

Figures continued

Figure 3-2

Figure 3-3

Figure 3-4
Figure 3-5
Figure 3-6

Figure 8-1

Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9
Figure 8-10
Figure §-11
Figure 8-12
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4

Figure 9-5

Handshaking Protocol Between Host and

Program Fragment Showing Host/T AAC-1

HandshaKingccecceaiimicncse 3-6
Display of TAAC-1 Video in Sun MONitor 3-14
Building a TAAC-1 Program...........cooeeeennisnnn: 3-15
Examples of Load Map and Header Files................. 3-22
Information Carried in the TAAC-1
Instruction Word ...cc.eeeeeciiviiiimneeneieceiiiienninsiene 8-4
TAAC-1 Processor ATChItECtUre.......ccueviiiiinninnannene 8-5
The Sequencer (SQ).....oiiimeicnnimiiiec 8-10
ALUSRC and RDooiiiiiiciiiiiiiniennccininnnienieenns 8-15
The Barrel Shifter (BS) .ccooveeeeiiiinirieniennnecniieinne, 8-19
The Multiplier/Accumulator (MA)coovimnieceene 8-21
The Lookup Table.......oooiiiininiiiiiiicns 8-24
The Floating Point Processor (FP).........cocoeiiins 8-28
Format of AC Register Fields.......ccoevvniiiiiinni 8-34
INStruction SUMIMATYc.coiiirriemeriesesisiisnsmnsssiescs 8-53
Instruction Summary (continued)ccoveeeeecniininns 8-54
Data FIOW SUMIMATY ..cocoviiiiiiininnnieceiesiiessenanens 8-55
Sample tadeb WINAOWcoouccuiiiiiiiisinciiens 9-10
tadeb Window Layoutcooeircninnnininiinne 9-10
taprof WINAOW....coiiiiiiiecnriiiinisisccsnens 9-23
tatool Window and the Video Editorc.cccoeues 9-32
Video Editor Windows - Single- and
Dual-Monitor VEISIONSc.cccveririremreeneneseiiiiinaiaeens 9-32

xii

Table 2-1
Table 2-2
Table 2-3
Table 4-1
Table 4-2

Table 5-1

Table 8-1

Table 8-2

Table 8-3

Table 8-4

Table 8-5

Tables

TAAC-1 Local Bus Address Map Summary............ 2-9
3D Image Space Relationshipscccceevieuennee. 2-24
RAMDAC Palette Multiplexing.............ccoovvevvennenn. 2-29
Old and New Ways of Declaring Functions.............. 4-18

Replacing Non-Register Variables in Assembly

COdE ...t 4-27
Restrictions on Relocatable Expressions.................. 5-6
Floating Point Status Word Bit Definitions.............. 8-32
Summary of AC Register Instructions...................... 8-35

Video Interpretation of ‘‘Dice Mode’’
Data Cubescccovviviniencciiniiiieec e 8-36
Bit Assignments in DRAM Mode

Register AM.....cccccoovvvvevinviicineen, 8-42

Bit Assignments in Miscellaneous

Register MO.......ccccoovvvuennnnnn.

Xiii

Preface

The TAAC-1 User Guide describes the operation and functionality of
the TAAC-1 Application Accelerator, a powerful, user-programmable
accelerator used for compute-intensive applications such as image
processing, high-quality rendering, simulation, and scientific
visualization.

Using this guide and the TAAC-1 requires a working knowledge of the
C programming language, and the UNIX/SunOs operating system.

This latest version of the User Guide covers TAAC-1 software release
2.2. The 2.2 release includes the volume rendering toolkit, a Pixrect
interface, an expanded image processing library, an expanded graphics
library, and demos that show the new software in operation. See the
Release Notes for 2.2 for more information on the exact nature of the
new software,

As part of the 2.2 support effort, the original User Guide has been split
into two documents. The User Guide, which formerly contained all
TAAC-1 documentation, now contains an introductory chapter, a
hardware overview, and chapters on TAAC-1 programming, the C
compiler, the assembler, the linker, and the object librarian, Two other
chapters describe assembly language programming and t
utilities.

The new document, originally part of User Gu
Software Reference Manual. It contains all
host and TAAC-1 subroutine libraries, the vol
interface, and the TAAC-1 demos.

- XV -

Chapter 1

Introduction

INtroduCtioncoceevierieinneiinenie e s ee s 1-3
Architectural Goalscovviniiiniiniininnineninniceceesiene 1-3
Exploit Parallelism........ccccceeiiiiiinienniceninniceneenecnecennens 1-3
MiInimize LatencCyccoceeeevieiiienerennenienteneenrenreeneesecnnes 1-4
Support Varied Data Structuresccoceeceereeveceerenveenens 1-4
Allow Transparent Memory ACCESSccceeverrrrrvecernnnn. - 14
Avoid Data Bandwidth Bottlenecks.........cccecveveervenriennnn. 1-5
Approach Capability of Dedicated Hardware................. 1-5
Efficiently Execute C Programs..........cccceeeeveneeerereenneenss 1-6

Provide High Level Language Compiler........................ 1-6

Architectural Goals

Exploit Parallelism

Introduction

The TAAC-1 is designed to focus on the computationally intense and
display portions of applications involving spatial and geometric data.
High performance is achieved by dedication to the application task,
leaving the operating system, user interface, data base management,
multiprocessing, and networking tasks to the Sun 3 or 4 workstation.

The TAAC-1 Application Accelerator is designed to provide maximum
performance for the class of problems which involve geometric or
spatial data. Design goals have been performance, flexibility, and ease
of use.

The performance goal is to provide the processing speed of dedicated,
special purpose hardware. The flexibility goal is to provide the user
with a highly programmable tool to meet chan ging needs while
continuing to provide a very high level of performance.

Processors offering the performance and flexibility goals stated above
have traditionally been very hard to use, with the vendor often
providing only an assembler or very limited function library. The ease-
of-use goal has been met by a high level language compiler, to make
the power of the accelerator available in a familiar programming
environment.

The TAAC-1 contains multiple arithmetic and functional units which
efficiently implement the fine-grain parallelism of many algorithms. For
instance, operand address calculation, memory access, multiple
arithmetic operations, and control flow can be accomplished in a single
processor instruction. As such, one TAAC-1 assembly instruction can
correspond to multiple microprocessor assembly instructions.

@ sun 1-3 Revision A of 15 September 1988
microsystems

1-4 Chapter 1 — Introduction TAAC-1 User Guide

Minimize Latency

Support Varied Data
Structures

Allow Transparent
Memory Access

The TAAC-1 is a low-latency (as opposed to heavily pipelined)
design. Arithmetic operations complete in one instruction cycle. This
feature makes the processor efficient for both scalar and vector
processing and increases the simplicity of programs compiled for the
TAAC-1.

Multiple pipeline stages are difficult to keep full in general purpose
software. Program branches require additional instruction cycles to fill
or flush the pipeline. These difficulties are eliminated with a low
latency design. Conditional and adaptive algorithms which include a lot
of testing and branching benefit significantly.

The class of applications having spatial and geometric data is not in
any way restricted to a single data structure. The TAAC-1 is designed
to support several of the most common data organizations: multi-
dimensional arrays, linked lists, and structures.

Special hardware in the TAAC-1 processor provides support for
stepping through one, two, or three dimensional arrays of 32-bit data
without incurring overhead for address calculation. For example, the
array can as easily hold the results of a three dimensional seismic
survey as a two dimensional matrix of floating point values for an
analysis problem. Multiple address registers and multiple ALUs allow
the concurrent computation of address and data.

The TAAC-1 is designed to allow the processor direct access to a
large local memory with minimum overhead and software
transparency. Local bus access and cycle times are transparent to the
Processor.

After initiating a memory access in one instruction, the TAAC-1 goes
on to process the next instruction unless:

+ the operation was a READ and (1) the instruction specifies that
the data read is to be used in the current instruction cycle or (2) the
read will not complete in the current cycle, and the data read will be
used in the next cycle.

S u n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 1 — Introduction 1-5

¢ the operation was a WRITE which will not complete in the current
cycle, and the current instruction changes the data, address, or
address mode registers.

* the operation will not finish in the current instruction cycle, and the
next instruction contains another memory access.

This feature allows optimization of the inner loops of programs written
in TAAC-1 assembler by interleaving memory access and
computational cycles.

Avoid Data Bandwidth

Bottlenecks
One of the TAAC-1 design goals is to provide data paths to keep its
high performance arithmetic elements supplied with data at or near
their rated throughput. Several features of the TAAC-1 architecture
reflect this goal:

* Six internal processor buses, providing a variety of paths between
the processing units.

* 128 general purpose registers available at all times, rather than a
few registers for each procedure level.

* A large local memory so that application data can reside locally and
host bus I/O bottlenecks can be avoided.

* Vector data paths from the memory to the processor for fast access
to sequentially stored data.

Approach Capability of

Dedicated Hardware
At the level of technology of an add-on board, the TAAC-1 strives to
come close to the performance of dedicated hardware: to do
convolutions as fast as an image processor, geometric transforms as
fast as a transformation pipeline, line and polygon drawing as fast as
custom integrated circuits, and arithmetic as fast as an array
processor. Software for the TAAC-1 can dynamically reconfigure the
multiple processors and data paths in the processor, to match the
needs of each algorithm. In effect, the processors and data paths can
be configured into a ““soft’ pipeline for the most efficient execution of
any particular code. The pipeline can be changed on an instruction-by-
instruction basis to provide the best overall throughput.

S un Revision A of 15 September 1988

microsystems

1-6 Chapter 1 — Introduction TAAC-1 User Guide

Efficiently Execute C
Programs

Provide High Level
Language Compiler

Another design goal has been efficient execution of C language
programs. This language was chosen because of the ease of
developing compilers and because of its increasing pervasiveness. A
C compiler allows the user to maintain compatibility with existing and
common algorithms without having to learn new ways of thinking and
programming.

There is a cost to meeting these performance goals. The TAAC-1isa
highly complex device. However, the user is shielded from the
complexity of the TAAC-1 by the high level language compiler. The
compiler is augmented with functions which give the programmer
specific command over many of the hardware resources of the TAAC-1
(see C Compiler, built-in functions). In addition, a growing set of
TAAC-1 subroutines, including control functions, optimized math
functions, graphic routines, and image processing routines will aid
system utilization.

sun Revision A of 15 September 1988

microsystems

Chapter 2
2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.

2.10.

2.11.

Hardware Overview

Hardware OVerview.........ccooueieueirciiiennceceecveeenne 2-3
TAAC-1 DeSCTiption.....ccceceeteieenieiienrereeeer v e 2-3
Host VME Interface........cocvevvienieieennriecenreiseeeesinens 2-3
LOCal BUS ...ttt 2-5
Data/Image MEmOTYccccveveerieniirineiceienrcieeeeeeseeeneeens 2-5
Program MemOTYcocivuiniiiieiiiieeeeceee s 2-7
Scratchpad/ Stack Memorycccoevvieveeeviviiiieveeene. 2-8
Control Register MEMOIYc.c.c.ocvevererevinvennnnn. e 2-8
Memory Address SPaceocueveeeevicreneereeneceeeeeeeeeeene 2-8
ProCeSSOT......oiiiecieiieetccceeeet e 2-10
ALUSRC and RDoooviiioiiiiiieciecceceeeeee e 2-10
Multiplier/Accumulator (MA)ocveeeeeeeeeeeeceeeereeenannn, 2-10
Floating Point Processor (FP)........ocooeeveeeeveeeereeresrennn, 2-12
Barrel Shifter (BS)ccoouvvvnniiiiiiecieeece e 2-12
Miscellaneous Lookup RAM (LT)oooeevevevrveeeeennen. 2-12
Lookup PROM (LU)....cooioiiiriiieiiceeeeeeeeeeeeee e 2-12
Buses and Data Paths........c.coocveveeiiiiieneeeeeeeeeenn. 2-13
The E BUS...cociiiiiiiiiininiiieee e 2-13
The A and B BUS....ccccoummniiiiiieiieececeee e 2-13
The CBUS ..ottt 2-14
The D BUS ...ttt 2-14
The FBUS ...ttt 2-14
Address REGISETS...c..ocvruiieerieeiireiecctcee et 2-14

2.12.
2.13.

2.14.

2.15.

Address Immediate Register (AD)cocccvvviiiiiinnininnnn. 2-15

Address Count Register (AC)coccoeviiviiniiniiiniiiinn, 2-15
DRAM Mode Register (AM)...ccccoevviiiiiinniiiiiniiinnenn, 2-16
Miscellaneous Mode Register (MO)....cccuevvenineineennenenn 2-18
VECLOT POTS ..ocviviiiiieieniiciiicnieciteeee s 2-19
Detailed Information: Data/Image Memory ..o 2-20
Linear (1D) Addressingccocccveevvcivniiinniciiiicnnncinnnnn. 2-20
Image (2D) Addressing......ccccvvviiiiiiniinniniiniiinnie s 2-21
Volumetric (3D) Addressing.......ccccceveemerveeenennnecncnnne 2-23
Video OUtPUL..ccociiiriiiceeieie it 2-24
Read Masks....ccoriienieiiiiinicciecienieennine e 2-25
Overlay/BlinK.....ccccoceviieninniiniiiiiie e 2-25
Channel Selectcccovivnieeiiniiniiiiiiiie 2-25
Scan Line Fill ...t 2-25
Video Keying into Sun Windowsccccveveiiiinniinniinns 2-26
Detailed Information: Brooktree RAMDAGC:s................. 2-27

2.1. TAAC-1
Description

2.2. Host VME
Interface

Hardware Overview

This chapter provides an overview of TAAC-1 hardware and system
capabilities, beginning with discussions of the main architectural
features, as shown in the system architecture diagram on the next
page. Additional information sections provide explanations of
data/image memory organization and Brooktree RAMDAC
configuration.

The TAAC-1 is a very high performance computational engine with an
embedded display system which generates a high quality video signal.
The two board set plugs into the Sun workstation and provides
additional computing power and a high resolution full-color (32
bits/pixel) frame buffer and display system.

The TAAC-1 has a large local memory which can be used either as
storage for large data sets or as a frame buffer to store images for
display from the TAAC-1 video output circuitry.

Video signals produced on the TAAC-1 can be displayed in a window
on the Sun workstation screen or on a separate monitor. The

TAAC-1’s video controller can be programmed for a wide range of
video formats, ranging from low resolution 512 x 512 interlaced to 1024
x 1024 non-interlaced. Standard video formats currently supported
include Sun, Hires (1024 x 1024), RS-343 and RS-170, with or
without genlocked external sync.

The TAAC-1 is connected to the Sun workstation VME bus through a
bi-directional host bus interface. All communications to and from the
host occur through this interface.

sun 2-3 Revision A of 15 September 1988

microsystems

2-4 Chapter 2 — Hardware Overview TAAC-1 User Guide

The VME bus interface consists of two parts - a control register in
VME address space and the interface to the local bus (LB) on the
TAAC-1. The control register, called the slave mode register (SMR),
consists of TAAC-1 processor control bits, TAAC-1 data/image
memory access mode bits and TAAC-1 memory control bits. The
memory control bits select which type of TAAC-1 memory is being
mapped into Sun virtual memory space. This is necessary since the
TAAC-1 local bus address space (16Gbyte) is larger than the VME
address space (4Gbyte), and it is of course not feasible to occupy the
entire VME space. Therefore, the TAAC-1 host library of memory
access routines allocate approximately 8Mbytes of VME virtual
address space. This is sufficient to map to each TAAC-1 memory
type, including the entire 1024 x 2048 x 32 bits or 8Mbytes of
data/image space.

Figure 2-1 TAAC-1 System Architecture

Video Output
- RAMDAC lookup tables

<«—>»| -+ video-keyed window —> Red
« overlay, hardware fill > Green
Workstation VME Bus + external sync > Blue

+ programmed video formats

ﬂ

\i

VME Interface DRAM

» slave only + 8Mbytes dynamic RAM -

+ 1D/2D address » 1024 x 2048 x 32-bit o Vector Ports

« bitmask select image memory <«—»-| - High-speed DRAM access

» 1D, 2D, 3D access modes
» serial port access
« 16 bitmasks

A
 J

A

A A Y

y Local Bus Yy P Processor

A A
f * two integer ALUs
y v + integer multiplier
« floating point ALU/multiplier
* barrel shifter
SRAM PRAM + programmable lookup tables
.| * 128 x 32-bit register file

» 64Kbyte static RAM * dual-ported program -
+ C stack memory
+ local/global variables + 400Kbyte static RAM

+ 16K 200-bit instructions

S u n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 2 — Hardware Overview 2-5

2.3. Local Bus

The major internal bus on the TAAC-1 is called the local bus. It
provides the connection between the TAAC-1 processor, various
memories on the TAAC-1, and the host interface. The local bus has 32
bits of data and 32 bits of address as well as miscellaneous control
lines.

The TAAC-1 memory space is addressed as 232 full 32-bit words and
is divided into four memory system types as designated by local bus
address bits 30-31. Each memory system type therefore maps to 230
words or 4Gbytes. The four types are:

Bit Field 00 Local Bus

Bit Field 01 Host Workstation
Bit Field 10 reserved
Bit Field 11 reserved

Currently, all data transfers are controlled by the host. Note that the
TAAC-1 is 32-bit word addressable and the Sun is byte addressable;
the Sun must transfer four bytes when writing or reading a single
TAAC-1 word.

2.4. Data/Image
Memory

The data/image memory is both dual-purpose and dual-ported. It
consists of 8Mbytes of memory, organized as two million 32-bit words.
It is fabricated with 256Kbit video dynamic random access memory
chips (VRAM). This memory is dynamic in nature and in this manual
is referred to as DRAM.

Each memory chip has a 64K x 4 internal organization. In the TAAC-1
the basic memory structure is called a sector and consists of 1 Mbyte of
memory organized as 256 x 256 x 4 x 32 bits. Each sector is built from
32 memory chips (256 x 256 x 4 x 32 = 64K x 4 x 32). In 2D terms, a
sector corresponds to 1024 x 256 x 32-bit pixels, as shown in the next
diagram. There are eight 1Mbyte sectors in DRAM memory. Each
sector consists of four 256Kbyte blocks.

3

S ll n Revision A of 15 September 1988

microsystems

2-6

Chapter 2 — Hardware Overview

TAAC-1 User Guide

Figure 2-2

1D/2D Addressing Relationships in Datal/lmage Memory

256
BANK A

512

768

1024

BANK B 1280

1536

1792

2048

0 256 512 768 1024
0 = Oxff | 0x10000 0x20000 0x30000
0x100> Ox1ff

-

-

—> Oxffff Ox1ffH] 0x2ffff Ox 3fftf
0x40000 0x50000 0x60000 0x70000

ox7

0x80000

D

o

0x100000

0x140000

2

0x180000

0x1c0000

0x1 fffff

2D addresses are shown in boldface on the outside of the box.
The corresponding 1D addresses (in hexadecimal) are shown inside
the blocks.

As its name implies, the data/image memory can hold either data or
images. When used to hold images, the memory serves as the frame
buffer (bit map memory), supplying data to the TAAC-1 video output
circuit. For display, the memory is organized as 1024 x 2048 x 32-bit

pixels.

The data/image memory may be used more traditionally to hold data.
The user can partition the memory into image and data segments as
needed by the application being performed. A typical usage is 4Mbytes

sun

microsystems

Revision A of 15 September 1988

TAAC-1 User Guide

Chapter 2 — Hardware Overview 2-7

2.5.

Program Memory

for display (1024 x 1024 x 32) and 4Mbytes (1Mword) for data store.
Using the Address Count Register (also called the AC register), this
memory is addressable in 1D, 2D, or 3D modes.

The data/image memory has two ports:

* a bi-directional random access port on the local bus. The TAAC-1
processor and the host interface can read and write the data/image
memory through this port via the local bus.

+ a bi-directional serial port which is connected to the video display
bus and the processor vector buses.

The serial port of the data/image memory provides very fast access to
data stored at sequential addresses. The serial port supplies data to
the display bus at the rate necessary to support high quality video
display.

The serial port is also connected to the processor vector buses. Each
of the two bi-directional vector buses can transfer 32-bit data words
between the processor and sequential addresses in the data/image
memory at processor clock rates. The serial buses provide data paths
much like those occurring in dedicated vector processor and image
processing systems.

The TAAC-1 processor is controlled by programs stored in the
program memory. This 400Kbyte memory is built of fast static RAM
and is dual-ported. The 32-bit local bus port is used to read and write
program data from the host interface or the TAAC-1 processor. The
second port is directly connected to the TAAC-1 processor and is used
by the sequencer to read the next program instruction.

The program memory stores up to 16K instructions. Each processor
instruction actually uses 32 bytes (256 bits) of local bus address
space; only the least significant 200 bits are currently defined and used.

In this manual, instruction memory is referred to as program memory or
PRAM.

sun Revision A of 15 September 1988

microsystems

2-8 Chapter 2 — Hardware Overview TAAC-1 User Guide
2.6. Scratchpad/
Stack Memory

2.7. Control Register

2.8.

Memory

Memory
Address Space

The TAAC-1 has a 16Kword scratchpad/stack memory connected to
the local bus, built of very fast static RAMs. Data in the scratchpad/
stack is available to the processor in one clock cycle. The scratchpad
memory is designed to store frequently used variables and small data
sets. Large data sets or display lists are stored in the data/image
memory.

The TAAC-1 C compiler uses scratchpad/stack memory for the C stack
and for global and static program variables. The C stack grows from
high to low SRAM memory, while the global and static variables are
allocated space at the beginning of SRAM.

In this manual, this memory is referred to as scratchpad or stack
memory, or SRAM.

All TAAC-1 control registers are addressable from the local bus, which
translates into a simple and uniform access to all control functions from
either the TAAC-1 processor or the host.

Without itemizing each control register, it is worth noting that of the
128Mwords designated as register space, 2Mwords are presently
assigned to registers on the processor and video boards. Local bus
address bit 19 effectively differentiates between register addresses on
the two boards (bit 19 = 0 for processor board registers and 1 for video
board registers).

In this manual, register space will be referred to as registers or REG.

All memories can be read and written from the local bus (LB) and are
differentiated by address bits 27 - 29. The field assignments for these
memory types are:

Bit Field Oxx Data/Image Memory (DRAM)
Bit Field 10x Program Memory (PRAM)

Bit Field 110 Scratchpad Memory (SRAM)
Bit Field 111 Control Register Memory (REG)

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 2 — Hardware Overview

2-9

Table 2-1

When communicating from the host to the TAAC-1, only one of these

memory types is addressable at any one time, as determined by the
page bits in the slave mode register.

TAAC-1 address space usage is summarized in the next table.

TAAC-1 Local Bus Address Map Summary

Memory Address Range Capacity
LOCAL BUS 0x0000 0000 - Ox3fff ffff 1G word
WORKSTAT. 0x4000 0000 - Ox7fff ffff 1G word
RESERVED 0x8000 0000 - Oxbfff ffff 1G word
RESERVED 0xc000 0000 - Oxffff ffff 1G word
DRAM/VRAM 0x0000 0000 - OxIfff ffff 512M word
Sector 0 0x0000 0000 - 0x0003 ffff 256K word
Sector 1 0x0004 0000 - 0x0007 ffff 256K word
Sector 2 0x0008 0000 - 0x000b ffff 256K word
Sector 3 0x000c 0000 - 0x000f ffff 256K word
Sector 4 0x0010 0000 - 0x0013 ffff 256K word
Sector 5 0x0014 0000 - 0x0017 ffff 256K word
Sector 6 0x0018 0000 - 0x001b ffff 256K word
Sector 7 0x001c 0000 - O0x001f ffff 256K word
reserved 0x0020 0000 - Ox1fff ffff 504M word

PRAM 0x2000 0000 - 0x2001 ffff 256M word
Instructions 0x2000 0000 - 0x2001 ffff 128K word
reserved 0x2002 0000 - Ox2fff ffff

SRAM 0x3000 0000 - Ox37ff ffff 128M word
Scratchpad 0x3000 0000 - 0x3000 3fff 16K word
reserved 0x3000 4000 - Ox37ff ffff

REGISTERS 0x3800 0000 - Ox3fff ffff 128M word
Processor Reg 0x3800 0000 - 0x381f ffff 2M word
Video Reg 0x3820 0000 - Ox383f ffff 2M word

NOTE: Each DRAM sector corresponds to a 1024 x 256 image space.

sun

microsystems

Revision A of 15 September 1988

2-10 Chapter 2 — Hardware Overview TAAC-1 User Guide

2.9. Processor

ALUs RC and RD

Multiplier/Accumulator
(MA)

The heart of the TAAC-1 Application Accelerator is the processor. It
is composed of multiple arithmetic/computational units connected by
multiple buses. The processor has ports to the local bus and to the
serial port of the data/image memory through the vector port buses. A
private bus connects the program memory to the processor. This bus
increases efficiency by keeping instructions off the local bus.

The TAAC-1 is a very long instruction word (VLIW) computer,
sometimes known as a wide instruction word computer (WIWC),
meaning that it executes several operations in the same instruction.
Another description frequently given for VLIW devices is that they are
machines with horizontal code. In the TAAC-1, each wide instruction
word is equivalent to several microprocessor assembly instructions,
controlling the operation of one or more computational elements and the
movement of one or more pieces of data. Each instruction also handles
program flow control.

The next diagram shows that the processor contains two registered
integer ALUs, a 32 x 32-bit multiplier/accumulator, a single/double
precision floating point multiplier/ALU/accumulator, a 32-bit barrel
shifter, an 8K x 32-bit PROM and 8K x 32-bit RAM lookup table and a
16-bit microsequencer.

RC and RD are registered integer ALUs, each containing a 64-register
file. The two ALUs operate independently and simultaneously.
Because of data paths to and from RC and RD, RC is generally most
appropriate for data operations, while RD is better suited for address
calculation.

The Multiplier/Accumulator performs signed and unsigned
multiplication on two 32-bit numbers and either stores the result or
adds it to (or subtracts it from) a 64-bit accumulation register. The
MA rounding modes are controlled by the Miscellaneous Mode
Register (MO).

S u n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 2 — Hardware Overview

2-11

Figure 2-3 TAAC-1 Processor Architecture
DATA
VA {GRA || VB ESRTE DF Fielp
‘ } A BUS
EA
B BUS
l EB} y
| \
y
Mx_| my ix | Fv | Fs BS) wY 7))
RD RC MULT/ FLOATING
BARREL LOOKUP
E recisTeReD | | recisteren| | MA Accum | | FP o BO oR > BS shiFTeR LU “TABiE
ALU ALU
S M | mL FH | FL BR LR
S CN
‘ E C} C BUS
D _ D BUS
ED y \
ADDRESS
ac SRS | || an tgsin | am tme [(wo tise || se (e)
Y
ACP COUNTER
PIPELINE
e
F BUS
DATA
READ
LOCAL //
BUS 16
bW (sa) y [s8)
2| pata
WRITE sQ SEQUENCER SD SEQUENCER

sun

microsystems

Revision A of 15 September 1988

2-12 Chapter 2 — Hardware Overview TAAC-1 User Guide

Floating Point

Processor (FP)
The Floating Point Processor performs floating point arithmetic
operations: addition, subtraction, multiplication, comparison, and
conversion between floats and integers. The 32-bit FX and FY inputs
can be loaded simultaneously. The result is stored in a 64-bit output
register (FS). The floating processor contains an independent
multiplier and ALU capable of simultaneous operatation.

Barrel Shifter (BS)
The barrel shifter performs left or right shifts or rotates. Barrel shifter
inputs are written to the BR register. The number of bits to shift can be
a constant in the instruction word or a variable loaded to the count
register (CN). When a variable is used, there must be at least one
cycle between loading the CN register and performing the shift.
Because the output of the barrel shifter is not registered, it must be
read in the same cycle the shift is performed.

Miscellaneous Lookup

RAM (LT)
The Miscellaneous Lookup RAM is an 8K by 32-bit lookup table,
which can be loaded by the processor and indexed with a 13-bit
unsigned integer from bits 0-12 of the LR register. LT has no initial
values. The output is available in the LT register.

To load the lookup table:

+ write the lookup table address to the LR register
» on a subsequent cycle, write the data to the LT register

To read the lookup table:

+ write the lookup table address to the LR register
« on a subsequent cycle, read the data from the LT register

Lookup PROM (LU)
The Lookup PROM has two parts: an 8K by 8-bit Exponent Lookup
PROM and an 8K by 23-bit Mantissa Lookup PROM. Both PROMs
are addressed with values in the LR register. The output is available
in the LU register. These lookup tables provide both floating-point and
integer lookups, depending on the setting of MO register bits 21-23.
The TAAC-1 library contains functions to access the Lookup PROM.

For additional information on the internal structures of the processing
elements, consult the assembly language chapter.

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 2 — Hardware Overview 2-13

2.10. Buses and Data
Paths

The E Bus

The A and B Bus

Central to the TAAC-1 performance is the interconnection of
processing elements as illustrated in the previous diagram. The ability
to independently select the sources and destinations for the six data
buses in each instruction gives the TAAC-1 much of its flexibility and
power. While no bus has a particular hard-wired function, each data
path generally has a common set of uses and can be best understood
by looking at how data moves through the processor.

The E Bus serves primarily as a data path for memory I/O and access
to the Local Bus (LB). With the Data Read (DR) and Data Write
(DW) registers serving as an interface between the Local Bus and the
processor, the E Bus provides a data path to all memory types for all
buses and the processing elements on them. The transceiver buffers
connecting the E Bus with the A, B, C and D buses permit data flow
through the processor in the same instruction without delay.

A and B buses primarily carry operand sources, providing inputs to
both registered integer ALUs, the multiplier/accumulator, the floating
point multiplier and floating point ALU. The E bus often serves as an
A or B bus source for memory data reads.

The register file for each integer ALU has one read port connected to
the A and B buses, permitting two register operands to be specified to
any of the arithmetic units in the same instruction. There are also
corresponding register file data paths for declaring any register the
destination for A and B bus sources.

The A and B buses can also be the source or destination of the two
vector ports (VA, VB), for direct access to sequential data/image
memory on virtually every processor clock cycle.

In addition, the barrel shifter and lookup tables can source the B bus to
form effective pipeline loops with integer data. For example, a single
instruction loop can be constructed to move integer data from an ALU
into the lookup table input, while moving the current lookup table
output into the ALU’s input. Similarly, the barrel shifter can be piped
with an integer ALU or multiplier/accumulator to perform ALU mask —

shift — merge, or ALU mask — shift — multiply loop operations in a
single instruction.

S un Revision A of 15 September 1988

microsystems

2-14 Chapter 2 — Hardware Overview TAAC-1 User Guide

The C Bus

The D Bus

The F Bus

2.11. Address
Registers

The C Bus serves as direct output bus for all the arithmetic units

(except ALU RD) and as a path to the E Bus and the TAAC-1
memories. The C Bus can also be used to source the register file in
ALU RC, so the multiplier/accumulator and floating point processor can
write results to a register file in one instruction. Therefore, RC tends

to be used for more data calculations than RD. The C Bus logically
supplies the barrel shifter and lookup table inputs.

The D Bus is used primarily for memory address and control, since this
bus sources the two memory address registers (AC, Al) and the

control registers (AM, MO). The output on integer ALU RD is
connected directly to the D Bus, so RD is more often used for address
and control calculations than RC.

The ALU pair (RC, RD) and dual output bus (C, D) arrangement

allows for the efficient execution of high-level language operations such
as stack-based variable access. In this situation, RD and the D Bus
handle getting the data while RC, the C bus and the arithmetic units
operate on the data.

The shift count for the barrel shifter can come from the count register on
the D Bus or from the instruction data field. This allows calculated
shift counts to be computed in RD concurrently with other arithmetic
operations. Also interfaced to the D Bus via the SF register for writes
and the FB transceiver for reads is the sequencer data bus - the F Bus.

The F Bus connects the sequencer to the D Bus for calculated input
values and to the instruction data field for compiler- or linker-
generated input values. The inputs from the compiler or linker are
usually branch or procedure instruction addresses, or counts for the
sequencer’s two internal loop counters. The sequencer internal
register and stack values can be written into memory by moving them
onto the F Bus, D Bus and E Bus.

Two memory address registers exist as destinations from the D Bus -
the Address Immediate Register (AI) and the Address Count Register
(AC).

S u n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 2 — Hardware Overview 2-15

Address Immediate

Register (AI)
The 32-bit Al register is used as a normal address register (i.e., load
the desired 32-bit linear address) and as such is used for addressing
all memory types - DRAM, SRAM, PRAM, and registers on the local
bus.

Address Count

Register (AC)
The AC register provides special 2D and 3D addressing mode support
in the TAAC-1, which further reduces the requirements for an ALU to
calculate an equivalent linear address from 2D or 3D indices. In 2D
and 3D modes, only DRAM memory access is possible.

For loading, the AC register is considered to have three fields - the
least significant byte or X field (bits 0-7); byte 1 (bits 8-15), the Y
field; and bytes 2-3 (bits 16-31), the Z field. These field names are
given in boldfaced capital letters to distinguish them from x,y or x,y, z
address indices in 2D or 3D arrays. The fields, X Y Z, can be
independently loaded.

Figure 2-4 Format of AC Register Fields

31 16 15 8 7 0

ID Addressing
When used in the 1D mode, the 32-bit AC register performs exactly as
the Al register — an address is loaded into all three fields
simultaneously.

2D Addressing
When using the AC register to handle a 2D image or array address, the
x index is loaded in the least significant short word (fields X and Y)
and the y index value is loaded in the Z field, the most significant short
word. Only 11 bits of these 16-bit, 2D indices are relevant. Once the
AC register has been loaded, the fields can be independently
incremented or decremented without involving the ALUs.

3D Addressing
In 3D mode operation, the three array indices (x, y, z) are loaded into
the AC fields X, Y, and Z, respectively. The three fields can be

S u n Revision A of 15 September 1988

microsystems

2-16 Chapter 2 — Hardware Overview TAAC-1 User Guide

independently incremented or decremented without an arithmetic carry
across fields.

There are actually two 3D modes:

* The normal 3D “‘dice’’ mode reorganizes the AC address for
accessing memory by alternating X, Y, and Z bits, providing a
cubical or voxel memory organization.

* In 3D “‘slice’’ mode, the X, Y, Z fields of the AC register are
loaded in the same manner; but the address is passed through for
memory access without bit reordering. This mode is most useful in
indexing 256 x 256 images such as CT scan data.

DRAM Mode Register

(AM)
The DRAM Mode Register (AM) controls the modes of data/image
memory access through the address registers (Al and AC) and the
vector ports. The AM register controls these fields:

Word/Channel Mask

Mode Enable

This field affects the operation of DRAM writes only. Its function is
different for random writes and vector port (serial) writes.

For random writes, word mask mode allows the processor, in a single
instruction, to write the same 32-bit value to as many as four
sequential DRAM addresses, starting on a four-word boundary. The
actual words written are determined by the four-bit word mode mask.
The least significant bit of the mask enables writes to the least
significant word of the four word DRAM cluster (or the DRAM word
addressed with the two LSBs = 0). Correspondingly, the most
significant bit of the mask enables random writes to the DRAM word
addressed with the two LSBs = 1.

For vector port writes, the four-bit mask does not act as a write mask
spatially, but in depth as a channel or byte mask for each 32-bit write
operation. The least significant bit of the mask enables serial writes to
the least significant byte or channel 0 (red) and the most significant
mask bit correspondingly controls writes to channel 3 (alpha).

Thus for random writes, this control bit enables the word mask mode
and for serial/vector port writes it enables a channel mask mode. The
vector ports are described in detail in a later section.

S u n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 2 — Hardware Overview 2-17

Word/Channel Mode

Mask
This four-bit AM value selects the DRAM words to be written in a
single operation when doing random writes and the DRAM channels to
be written when doing serial, vector port writes. This mask operation
is enabled by the word/channel mask mode enable bit.

Bitplane Mask ID
Selects a bitplane mask (0-15), to be set and/or used in subsequent
writes to DRAM memory only. 16 32-bit masks are available. Note
that selecting the bitplane mask ID via a host subroutine does not
affect the AM register and therefore would have no effect on processor
writes to DRAM. You must set the mask ID in the AM register.

Bitplane Mask Write

Enable

Enables use of the current bitplane mask in random Local Bus writes to
DRAM. When bitplane mask writes are disabled, the current mask is
ignored. The bitplane mask is not used for vector port writes (see
Word/Channel Mode Mask).

1D/2D/3D Select
Selects the mode in which the AC register X, Y, and Z counters are
loaded and incremented/decremented, as well as how the effective
address is calculated from these counters. See the Address Count
Register (AC) section.

Bounds Checking (Z-

Buffer) Enable
Enables conditional writes to DRAM memory. If bounds checking is
enabled, the processor permits writes to DRAM only if the value in the
upper 16 bits of the Data Write Register (DW) is less than or equal to
the upper 16 bits of the Data Read Register (DR). The comparison
between DR and DW is an unsigned 16-bit compare. To use this
feature for z-bounds checking:

* Initialize the DRAM area to be used to some z value (Oxffff0000
puts all pixels in the background).

¢ Store z values in the upper 16 bits of each pixel; pixel colors in the
lower 16 bits.

* For each pixel, read the pixel at that address, then write the pixel.
If the z value of the new pixel (DW) is less than or equal to the z

sun Revision A of 15 September 1988

microsystems

2-18 Chapter 2 — Hardware Overview TAAC-1 User Guide

DRAM Access Mode

Read Disable

Miscellaneous Mode
Register (MO)

VA and VB Strides

RC and RD
Configurations

Floating Point
Processor Modes

value of the current pixel (DR), then the write will take place.
Otherwise the processor will inhibit the write.

Selects random access, shift register load (DRAM to shift register),
shift register store (shift register to DRAM), or serial write enable
(shift register to DRAM). The normal mode is random access; the
other modes are for use of the vector ports. See the Vector Ports
section for more information.

This bit is used for diagnostics and by the register dump subroutine. It
disables reads into the DR and loads the Al address into the address
readback (AR) register. It should normally be zero.

The Miscellaneous Mode (MO) register controls modes for the vector
ports, integer ALUs RC and RD, the floating point processor, the
multiplier/accumulator, and the lookup table PROM. MO contains
these fields:

The stride is the amount used to increment the address when reading

or writing the DRAM shift register with the vector ports. Each read or
write automatically advances the address pointer, by one word (the
default), two, three, or four words. A stride of three, for example, reads
or writes every third word.

These fields set the mode of each ALU. Normal mode is word mode.
In byte mode, carry is inhibited between bytes, and the user selects
which byte the status will come from. In halfword mode, carry is
inhibited between halfwords, and the user selects which halfword the
status will come from.

The FP clock mode, fast mode, and configuration fields should not be
changed. The default values currently select FP fast mode and single
precision. FP round mode selects the direction of rounding for floating-
point numbers. The default is round-to-zero.

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 2 — Hardware Overview 2-19

Multiplier/
Accumulator Round
Modes

Lookup Table
Function

2.12. Vector Ports

The multiplier round mode selects the rounding option for integer
multiplies. No rounding is the default.

Selects the function returned by the lookup PROM.

For further information regarding AM and MO register fields, consult
the assembly language chapter. Many of these functions are controlled
by library subroutines.

The vector ports are high-speed buses connected between the
processor and the serial port of data/image memory. In most graphics
hardware, the serial port is accessed only by the display controller, for
image refresh. In the TAAC-1, the processor directly accesses the
serial port for reads and writes. This is achieved by dividing the
data/image memory into two distinct banks, A and B, and dedicating a
high-speed serial port to each bank, so display controller access and
processor access can occur concurrently on different buses. The
processor can access either bank using a vector port or the random
access port connected to the local bus. The processor accesses the
serial ports of Banks A and B through Vector Port A (VA) and Vector
Port B (VB), respectively. Vector Port A is a source or destination for
processor bus A. Vector Port B is similarly tied to processor bus B.

The vector ports give the TAAC-1 processor access to a new 32-bit
word from data/image memory on every processor cycle within the
limits of the 1024-word serial shift register internal to the DRAM
array. Therefore, in reading or writing to data/image memory through
the vector ports, most applications will be forced to break the single
cycle access on every 1024th access, to load or store the serial shift
register to or from the actual DRAM array. This process requires a full
memory cycle or three processor cycles to set up another fully random
address. The shift register can only be loaded on 1024-word
boundaries (sequential addresses 0-1023, 1024-2047, 2048-3091,

etc). This 1024-word memory page is sequential in linear address
space and corresponds to a 256 pixel by 4-line spatial area in 2D image
space.

The division between memory banks A and B is between sectors 3 and
4, and in 2D image space corresponds to the vertical boundary at

sun Revision A of 15 September 1988

microsystems

2-20 Chapter 2 — Hardware Overview TAAC-1 User Guide

y=1024, as shown in Figure 2-2. Bank A is spatially 1024 x 1024 x 32
bits starting at linear address 0x0 or 2D address (0,0) and Bank B is

the same size beginning with sector 4 at linear address 0x100000 or

2D address (0,1024). This division allows effective 1024 x 1024 double
buffer operation with the processor alternately creating the new image
in banks A and B (using vector ports A or B) while the display
controller concurrently refreshes the image from the opposite bank.

2.13. Detailed

Information:

Data/Image

Memory
This section describes how data/image memory is addressed in 1D,
2D, and 3D modes.
The TAAC-1 is configured with 8Mbytes or 2Mwords (32-bit) of
data/image memory. To most efficiently utilize this memory, you need
to know how the memory is organized and how it is addressed in 1D,
2D, and 3D modes.

Linear (1D) Addressing

The data/image memory is built with 256K video random access
memory chips. The memory is organized as four parallel 256 x 256
memory matrices, so that 32 memory chips addressed in parallel can
simultaneously access four 32-bit words from an 8-bit row and 8-bit
column address. In the TAAC-1, this basic memory structure is known
as a sector and consists of 4 x 256 x 256 x 32 bits of memory. A
IMbyte (256K word) sector can be addressed with only 18 bits.

Figure 2-5 Sector Organization

Bits 24-31
Bits 16-23
Column Adrs 7 Bits 8-15
7
8 Bits 0-7
Row Adrs [T | é g
s [] | 8 chips
| | 4 bits/chip
| 32bits |
DO D1 D2 D3
Four 32-bit words
S u n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 2 — Hardware Overview 2-21

Figure 2-6

Image (2D) Addressing

Figure 2-7

For more memory, sectors are simply replicated, requiring additional
address bits for sector selection. The TAAC-1 has eight sectors for a
total of 8Mbytes (2Mwords, or 2?') of contiguous data/image memory.
The next illustration shows the related row, column, and sector fields in
the 21-bit DRAM address.

Sector Address Map
Bits 0-17
| 3 | 8 | 8 | 2

Sector Row Address Column Address j
4-Word Selector (DO - D3)

The 8Mbytes of data/image memory, which is uniquely addressed by a
21-bit address, can also be addressed as two-dimensional x/y image
space. In 2D space, the 8Mbytes of memory is organized as a 1024 x
2048 x 32-bit image array. The next diagram shows how the bit fields
of the two spatial coordinates (x,y) relate to the 21-bit linear address,
with 10 bits of spatial x addressing and 11 bits of spatial y addressing.
This bit shuffling is handled in hardware for AC register addressing.

2D X/Y Address to Linear Address Mapping

11 bits y 10 bits x
3 8 2 8
3y |2x 8y 8x
21 bits

Analyzing this bit re-structuring, you can see that the 16 least
significant bits (8 LSBs of x and 8 LSBs of y) or 64K words of linear
address space form a 256 x 256 replicated pixel structure called a
block. Sequential linear addresses in this 16-bit address space map
left to right (8 bits of x), top to bottom (8 bits of y) in 2D raster image

S ll n Revision A of 15 September 1988

microsystems

2-22 Chapter 2 — Hardware Overview TAAC-1 User Guide

space. The next diagram shows the relationship between the first 16
bits (or block) of 1D data space and 2D image space.

Figure 2-8 Linear Addresses in a 2D Image Block

. 256
First Address > X
9 —— 255
256——> 511
256 °
—_—
A
\ \\ Last Address
y

Comparing the address map of Figures 2-4 and 2-5, you see that the
three most significant bits of the 11-bit spatial y address are mapped
directly to the three most significant bits of the sector field and the two
most significant bits of the spatial x field can be considered the block
number within a sector. The next figure also illustrates these
relationships.

Figure 2-9 I1D/2D Addressing Relationships

YYy XX YYYY yyyy XXXX XXXX
3 2 8 8
Sector Block Y-Block Address X-Block Address

With two bits of image x address forming the block field, four blocks of
256 x 256 x 32-bit pixels are needed to define one sector. Four
sequential blocks in linear 1D address space are organized as four left-
to-right blocks in one 1024 x 256 sector in 2D image space.

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 2 — Hardware Overview 223

Figure 2-10 Sectors in 2D Image Space

(0T ¢ F——.

Sector 0

1023, 0

Sector

Sector

Sector

Sector

Sector

Sector

N[ojoa|s~jWw|IN |

0, 2047 Sector 1023, 2047

Volumetric (3D)

Addressing
The TAAC-1 efficiently addresses data/image memory in two different
3D modes - ““dice’” and “‘slice.”’ In ‘‘dice’’ mode, the 21-bit DRAM
address is derived from three seven-bit fields corresponding to the
spatial indices, x, y and z. The three index fields are rearranged by the
AC addressing hardware , as shown in the next diagram, into seven

three-bit fields of the same significance, each with alternating bits of x,
y and z.

Figure 2-11 3D Index to Linear Address Mapping - “‘Dice’’ Mode

i6 y6 x6|15 ySlXS 24 y4 x4 23 y3 x3 22'y2 x2 z1 y1 x1 z0 y0 xOI

I I I]
Sector Block Y Address in Block X Address in Block

This format change produces a mapping of 3D data triplets in
sequential addresses in data memory. This mapping has the
advantage of compacting 3D arrays of data to contiguous linear space.
Because of the corresponding relationships of 2D space to linear
address space, 3D arrays are not scattered over image memory, but
instead are compacted into groups of image blocks (256 x 256 pixels).
The 3D image space table summarizes the relationships between 3D
data space and 1D/2D memory space.

S ll n Revision A of 15 September 1988

microsystems

2-24 Chapter 2 — Hardware Overview TAAC-1 User Guide

Table 2-2 3D Image Space Relationships
DI i
3D Total 2D Interpretation Cubes
Cube Size | Words | Blocks(256x256) X Y Available
8 512 1/128 256 2 4K
16 4K 1/16 256 16 512
32 32K 172 256 128 64
64 256K 4 (1 Sector) 1024 256 8
128 2Mb 32 (8 Sectors) 1024 2048 1
In 3D “‘slice’’ mode addressing, the 8Mbytes of data/image memory is
mapped as 32 slices (addressed by a 5-bit z index) of 256 x 256 image
data (addressed by 8-bit x and y indices). This mode is particularly
useful in storing multiple 256 x 256 x 32-bit images such as CT or
NMR data. The 3D indices are directly mapped into linear address
space without any bit shuffling, as shown in the next diagram.
Figure 2-12 3D Index to Linear Address Mapping - ‘Slice’’ Mode.

2.14. Video Output

: z4 23 72 lzl z0 P'7 y6 y5 yd4 y3y2 yl y0 lx7 x6 x5 x4 x3 x2 x1 xOl

1 1 1 1
Sector Block Y Address in Block X Address in Block

The video output portion of the TAAC-1 receives digital pixel data from
the data/image memory via the serial port and the display bus. The
video data is logically separated into four 8-bit channels:

L]

channel O (also known as the red channel) is for least significant
image data bits 0-7;

+ channel 1 (the green channel), for bits 8-15;
« channel 2 (blue), bits 16-23; and

« channel 3 (alpha), bits 24-31.

S u ll Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 2 — Hardware Overview 225

Each 8-bit channel of video passes through its own video lookup table
and digital to analog converter (DAC) to provide a palette of 2 2* or
16.7 million possible colors. The video output circuitry handles all
video timing and can be locked (genlocked) to an externally applied
composite sync signal such as NTSC video or Sun video. Most of the
timing parameters are programmable, offering the flexibility needed for
special purpose applications such as driving flat-panel displays at
various line rates. The programming of the sync hardware is complex
and the customer should consult with the factory for unusual video
display formats. Video pan control is available in four-pixel increments
and video scroll control in single-line resolution.

Read Masks
Another video pipeline feature provided by the TAAC-1 is full bit depth
video channel read masks. The entire 32-bit pixel depth is logically
ANDed with the read mask; the resultant value is used to index the
colormap.

Overlay/Blink

The alpha channel (most significant image bits 24-31) can be used as a
full 8-bit overlay channel providing 256 possible overlay colors from a
palette of 16.7 million. In addition to a master overlay enable control
bit, individual alpha channel bitplanes can be enabled as active overlay
planes with an eight-bit overlay mask register. This provides a simple
and effective means for creating and activating multiple independent
overlay images from the single eight-bit alpha channel (e.g., three
independent overlays using bits 24-27, bits 28-29 and bits 30-31 or
double-buffered 4-bit overlays).

A hardware blink is also available on the alpha channel only.

Channel Select
The flexibility of the TAAC-1 video section permits multiple display
modes. By enabling and properly loading the full 256 x 24-bit
colormaps available to each 8-bit image channel, it is possible to utilize
image memory to display four independent 8-bit channels in pseudo
color, an §8-bit display with 8-bit overlay, or a 24-bit true-color image
with 8-bit overlay.

Scan Line Fill
Use of the TAAC-1’s scan line fill mode to create images offers
performance advantages by substantially reducing the number of
memory writes required. In normal image creation, it is necessary to
define every pixel even though many of the pixel runs on a given scan
line may be the same value. With scan line fill it is only necessary to

sun Revision A of 15 September 1988

microsystems

2-26 Chapter 2 — Hardware Overview TAAC-1 User Guide

Video Keying into Sun
Windows

define the pixels at the edges of constant-shaded areas. The TAAC-1
effectively does a bit-by-bit parity fill between pixels on the same scan
line.

Because of the memory organization in the TAAC-1, this parity fill is
oriented to a four-pixel structure rather than to a single-pixel parity fill.
Therefore, to turn on a bitplane from pixel 100 to pixel 400, pixels 100-
103 and 397-400 must be set. If only pixels 100 and 400 are set, the
parity fill will only turn on every fourth pixel in that bitplane between
pixels 100 and 400.

To further improve the usefulness of this feature, control registers
provide independent fill enable for the RGB channel set and the alpha
channel.

Unlike dual-monitor configurations where separate monitors are
dedicated to Sun and TAAC-1 video outputs, the single-monitor
system lets you see video from the workstation and TAAC-1 video
from the same display device.

The TAAC-1 video section is designed to provide TAAC-1 video
within the extensive domain of Sun windowing. The TAAC-1 features
a video keying circuit which allows it to insert TAAC-1 video into Sun
video. This video mix occurs on the TAAC-1 and is keyed to a user-
selectable color in Sun video. TAAC-1 video is inserted or keyed into
Sun video based on a color in Sun video, to form a composite
Sun/TAAC-1 frame. Video keying provides a ‘‘porthole’’ into TAAC-
1 image memory in the context of the Sun windowing system by
creating a Sun window with a unique, user-selectable color assigned to
a canvas area inside the window.

See the TAAC-1 utility tatool to learn how to up the TAAC-1 and
Sun keying parameters. For more information on the TAAC-1 video,
see the next section.

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 2 — Hardware Overview 2-27

2.15. Detailed
Information:
Brooktree
RAMDACs

This section explains the function, use, and internal configuration of the
Brooktree RAMDACs.

The Brooktree RAMDAC has a 256 x 24 color lookup table with triple
8-bit digital to analog converters (DACs). RAMDAC features include
bitplane masking and blinking, color overlay capability (four 24-bit
colors) and a color palette or lookup table RAM.

Figure 2-13 Brooktree Functional Block Diagram

. 256 X 24-bit
: Read Blink yi i \
Video »—4— 7 Color 7
8 | Mask Mask 8 Palette 24 73> DAC Red
. 4 X 24-bit £>]1 DAC Green
Read Blink , , 78
Overlay>72; Mask Mask 75 Overlay 754
Palette
V4
RAM Enable / 7g™] DAC Blue
V4 | __T
75 Select

The 24-bit output to the video DACs is either the color palette RAM
output (indexed by 8-bit incoming video) or one of four overlay colors
as controlled by the two RAMDAC overlay bits and the RAM enable
bit of the internal RAMDAC command register.

NOTE: The RAMDAC overlay bits and four overlay colors should not
be confused with the implementation of the TAAC-1 overlay function.
The RAMDAC overlay capabilities are used to effectively enable or
disable TAAC-1 video channels. More on this subject later.

The TAAC-1 implementation uses four Brooktree RAMDAC S, as
shown in the next diagram. One RAMDAC is associated with each of
the four 8-bit video channels. The RGB outputs of all four RAMDACS
are physically tied together to form the RGB monitor signals. This
physical arrangement and the two overlay bits on each RAMDAC are

sSsun Revision A of 15 September 1988

microsystems

2-28 Chapter 2 — Hardware Overview TAAC-1 User Guide

used to implement independent channel select and a full 8-bit overlay
channel.

Figure 2-14 RAMDAC Configuration

TAAC-1
Overlay Mask —7g>] Logical ORof | ,
A bitwise AND ["1
8
DAC 3
Channel 3
bits 24 - 31 - Do - b7
,_{>°_, OL1
» oLo
1
DAC 2
Channel 2
bits 16 - 23 v >| DO - D7 7 R
8 -1 OL1 /8 G
,/1 OLO ,’8 B
DAC 1
Channel 1
bits 8 - 15 # Do - b7
8 OL1
A= OL0
. DAC O
hannel 0
bits 0 - 7 # > D0 - D7
8 c oL1
hannel
Select /2 7 3 OLO

With the four overlay colors in all RAMDACS (0-3) defined to be
black, the individual overlay control bits (OLO) as defined by the four
channel select or enable bits can be used to switch each RAMDAC’s
output from the color palette RAM to black. Since the DAC adds no
current drive to the hard-wired RGB output network when outputting
black, the RAMDAC or video channel is effectively disabled.

The full eight-bit TAAC-1 overlay function is implemented with the
channel 3 RAMDAC (alpha channel) and the use of the other overlay
channel control bit (OL1). When the bitwise AND of the channel 3
video bits (24-31) with the overlay mask register (both are 8 bits
wide) is true, RAMDACs 0, 1, and 2 are switched to a black overlay
color or disabled. At the same time, the inverted signal enables the

S u n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 2 — Hardware Overview 2-29

channel 3 RAMDAC, thus outputting the overlay channel through its
own color palette.

For the channel select and alpha channel overlay to work, the
RAMDAC overlay colors must be loaded to black and the command
register must be in the state:

TA_USE_LOOKUP | TA _MASKO_OFF | TA MASKl OFF

The overlay select truth tables appears in the next table. For more
information, refer to the reference pages for the functions
ta_set_channel() and ta_set_channel_select(), in the host library
chapter.

Table 2-3 RAMDAC Palette Multiplexing

Overlay Overlay RAM Enable RAM Enable
OLO, Bit 0 OLI1, Bit 1 TA USE_LOOKUP TA_USE_OVERLAY

0 0 Color Palette Overlay Color 0

0 1 Overlay Color 1 Overlay Color 1

1 0 Overlay Color 2 Overlay Color 2

1 1 Overlay Color 3 Overlay Color 3

CAUTION: Since the outputs of the RAMDACs are tied together, it
is important that the RGB colormaps of each RAMDAC be properly
loaded before the channel is enabled, to avoid over-driving and
possibly damaging the video monitor.

For most users, it is not necessary to thoroughly understand the
RAMDAC operation. Utilization of the provided library functions for
controlling these video functions is suggested. Examining a few simple
operating cases will help clarify this operation. For an example
program, refer to the TAAC-1 programming chapter.

Example 1: Single 8-
Bit Image (Pseudo
or Grey) in Channel 0
1. Load red, green, and blue color palettes in RAMDAC 0 as desired
using ta_set_colormap().

sun Revision A of 15 September 1988

microsystems

2-30 Chapter 2 — Hardware Overview TAAC-1 User Guide

2. Load black (0) in RGB palettes of RAMDAC:s 1, 2, and 3 using
ta_set_colormap(), or do not enable them when you call
ta set_channel_select().

3. Enable RAMDAC O with ta_set_channel_select().

Example 2: Full 24-
bit True-Color Image

1. Load red color palette (ramp) in RAMDAC 0 and black (0) in green
and blue palettes of RAMDAC 0 using ta_set_colormap(.

.[\)

Load green color palette (ramp) in RAMDAC 1 and black (0) in red
and blue palettes of RAMDAC 1.

3. Load blue color palette (ramp) in RAMDAC 2 and black (0) in red
and green palettes of RAMDAC 2.

4. Load black (0) in RAMDAC 3 or do not enable via

ta_set channel_select().

5. Enable RAMDACs 0, 1, and 2 using ta_set_channel select().

Example 3: True-
Color with 8-bit
Overlay
1. Load red color palette (ramp) in RAMDAC 0 and black (0) in green
and blue palettes of RAMDAC 0 using ta_set_colormap().

2. Load green color palette (ramp) in RAMDAC 1 and black (0) in red
and blue palettes of RAMDAC 1.

3. Load blue color palette (ramp) in RAMDAC 2 and black (0) in red
and green palettes of RAMDAC 2.

4. Load RGB color palettes of RAMDAC 3 with 8-bit overlay
colormap.

5. Enable selected overlay mask bits (probably all) and the overlay
mode using ta_set overlay mask() and ta_set_overlay_
mode ().

S u n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 2 — Hardware Overview 2-31

6. Enable all four RAMDACS with ta_set_channel select().

The eight-bit overlay channel can easily be configured as two four-bit
double-buffered overlays and switched by simply reloading the overlay
mask.

sSsun Revision A of 15 September 1988

microsystems

Chapter 3
3.1.

3.2

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

TAAC-1 Programming

TAAC-1 Programming

....................................

Dividing Tasks Between the Sun and TAAC-1..............

Synchronizing Programs.............

....................................

TAAC-1 Memory Usage........... e et s enae e

ALU Registers crreeeaes .

D P T XY TPy sessenne essee

....................................

....................................

Reading and Writing Variables in TAAC-1

Programs........ccccccoveereneeriennnnne.

....................................

Using Host Library Read/Write Routines......................
More Direct Access to TAAC-1 Memory

Data Typesccccoueeevecrenrerieninnnns

....................................

Data Transferred from a Host Program
Structures Within TAAC-1 Programs..........coeouue.......

Window Management.................
Building a TAAC-1 Program......
The taabs2o Utility....................
TAAC-1 Development Notes
Tutorial.......cccoovvinnenirinerinen,
Host Program.........c.ccocuiuvnnnn.n.
TAAC-1 Program........................

sess0ssresssstenttatsttrnssonan seese

....................................

....................................

....................................

....................................

....................................

....................................

Building and Running the Program.............c.cccoouun........

Example Programs: Introduction

....................................

3-8

3-9

3-9
3-10
3-10
3-11
3-11
3-14
3-16
3-16
3-17
3-17
3-19
3-20
3-35

3.9.

3.10.
3.11.
3.12.

Example Programs: Double-Buffering,

Channel-Bufferingccocceeevveniiniiiiniiiiee, 3-35
Double-Buffering in Banks Aand B ... 3-36
Channel-Bufferingc.ccceeiieiiiininiiniineiencennienns 3-39
Example Program: Overlay Modecccovvinininiicncnn 3-43
Example Program: Blink Modeccccooiiiniinncnnncns 3-46

Example Program: TAAC-1 Graphics Library............... 3-48

3.1. Dividing Tasks
Between the Sun and
TAAC-1

TAAC-1 Programming

This chapter describes the general approach for developing applications
on the TAAC-1 application accelerator, focusing on the type of program
that has components running both on the host Sun workstation and on
the TAAC-1. This type of application involves communication
between, and synchronization of, separate host and TAAC-1

processes.

This chapter consists of two overall parts, the development overview
and the tutorial. The development overview discusses the division of
tasks between the two processors, as well as communication,
synchronization, TAAC-1 memory allocation, window management,
and building a TAAC-1 program. The tutorial part of the chapter
contains an instructional programming sequence and TAAC-1 example
programs.

The first step in developing a TAAC-1 application is to assign portions
of the program to run on the host and portions to run on the TAAC-1.
Assignments are based on the types of tasks performed on the host

and the TAAC-1, as shown in the next diagram.

TAAC-1 software does not currently support standard I/O routines.
Furthermore, the TAAC-1 is a slave processor and cannot write to the
host. Therefore, all reading and writing of data to and from the TAAC-
1 is done by host processor routines.

sSun 3-3 Revision A of 15 September 1988

microsystems

34 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

Figure 3-1 Division of Tasks Between Host and TAAC-1

Host Modules TAAC-1 Modules
« Disk I/O routines « Compute intensive routines
« User interface routines « TAAC-1 application libraries
» Host system libraries » TAAC-1 system libraries
» Host TAAC-1 libraries « Image generation and
« Window management routines manipulation routines

Synchronizing

Programs
Host and TAAC-1 programs are asynchronous. Synchronizing the two
programs is typically done with a simple handshaking protocol like the
one in the next illustration, which shows one possible organization for
the handshaking, based on clearing and setting a flag.

Notice in the illustration that the handshake flag (ioflag in this
example) is in TAAC-1 memory. The host program loads the TAAC-1
program and writes data to TAAC-1 memory. Then it sets ioflag,
telling the TAAC-1 to proceed. (TC_ioflag is the address of ioflag
in TAAC-1 memory.) The TAAC-1 program waits for the host
program to set ioflag, and clears the flag when it has finished its
tasks.

To further illustrate this synchronization technique, the program
organization described above is duplicated in Figure 3-3, using
program fragments with the appropriate TAAC-1 library routines.

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 3 — TAAC-1 Programming 3-5

Figure 3-2 Handshaking Protocol Between Host and TAAC-1

Host Process TAAC-1 Process

Open and initialize the TAAC-1

Load and begin TAAC-1 program

/

Write initial data to TAAC-1 Local Initialization
Loop until quit { Clear local handshake flag

Set (write) TAAC-1 handshake | Loop forever {
flag \.;
Wait until handshake flag set

Execute TAAC-1 routines
(user written routines)
(TAAC-1 library routines)

| Clear local handshake flag

4/
Wait until TAAC-1 handshake
flag is cleared (read TAAC-1) } End loop

Execute host routines

(read processed data from
TAAC-1)

(read window input)

(write interactive data to
TAAC-1)

} End Loop

@ S ll n Revision A of 15 September 1988
microsystems

3-6

Chapter 3 — TAAC-1 Programming

TAAC-1 User Guide

Figure 3-3 Program Fragment Showing Host/TAAC -1 Handshaking

Host Process

#include <taacl/taio.h>
#include "taacfile_map.h"

main () f
TA HANDLE *tah;
int ioflag val;

if ((tah= ta_open(0)) == NULL) {
printf ("error opening TAAC");
exit (-1);

}

if (ta_init(tah) == TA_FAILURE) {
printf ("error on TAAC init");
exit (1)

}

if (ta_run(tah, "taacfile.abs")
== TA FAILURE) {
printf ("error on ta_run");
exit (-1);

}

/* write initial data to TAAC-1 */

ta write(tah, &hostvar,
sizeof (hostvar), TC_taacvar);

while (!done) {
ioflag val = 1;
ta_write(tah, &ioflag val, sizeof
(ioflag val), TC_ ioflag);
while (ioflag val==1l)
ta_read(tah,&ioflag val,sizeof
(ioflag val),TC_ioflag);

} /* end while not done */
} /* end main */

TAAC-1 Process

#include <taacl/builtin.h>
int ioflag = 0;

main() {

while (1) {
while (ioflag==0); /*wait
until set */

ioflag = 0;
} /* end while 1 */
} /* end main */

sun

microsysteme

Revision A of 15 September 1988

TAAC-1 User Guide

Chapter 3 — TAAC-1 Programming 3-7

3.2. TAAC-1 Memory
Usage

ALU Registers

SRAM

DRAM

Variables used in TAAC-1 programs may be assigned storage in:

+ registers (ALU RC or RD) - 64 registers in each ALU
+ scratchpad memory (SRAM) - 16Kwords
+ data/image memory (DRAM) - 2Mwords

Frequently-used variables should be placed in registers, to
significantly reduce the time required for variable access. Because of
the large number of registers available, entire transformation matrices
or convolution kernels can be stored in register variables. Designation
of registers is done using standard C notation:

register datatype variablename;

You can also specify a particular ALU or register number. For example:

register RD int x; /* specifies a register in ALU RD */
register float y @2; /* specifies register #2 in ALU RC */
register float z @66; /* specifies register #2 in ALU RD */

SRAM holds the C stack; in addition, this is the default location for all
global and static variables. Care must be taken not to overwrite the C
stack with global or static variables that are too large. No runtime
detection of stack overflow conditions exists.

DRAM should be used for images and very large data structures. An
example of a DRAM variable declaration is:

DRAM float z[1000];

This declaration does not specify the variable’s location in DRAM.
The TAAC-1 linker will perform the memory allocation; however, you
must tell the linker which portions of the DRAM are available. (This
prevents the linker from allocating memory you are using for images or
other data not declared in your program.) The linker -d command line
option allows you to specify the starting and ending addresses of each
available segment of DRAM. As an example, to designate two

sun Revision A of 15 September 1988

microsystems

3-8 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

1Mbyte blocks available for DRAM variables, one at 0x80000 and one
at 0x180000, use this linker command line option:

% talink -d 0x80000 Oxbffff -d 0x180000 Oxlbffff foo.obj...
See the linker chapter for more details.

You can also specify a particular DRAM address from within a TAAC-
1 program by setting up a pointer to an absolute memory address. For
example, to point to the start of an image stored at location 0x 100000,
a TAAC-1 program would contain these lines:

#define TADATA 0x100000
int *p;

p = (int *)TADATA;

Be aware that, if you store variables in DRAM, the current DRAM
Mode Register setting will affect writes to those variables. For
example, if bitmask mode is enabled, the current bitmask will be
applied to all writes that use the AC or Al register. For more
information, refer to the description of the DRAM Mode Register in the
Hardware Overview chapter.

The built-in functions of the TAAC-1 compiler can also be used to
access DRAM memory in 1D, 2D, or 3D modes. See the compiler
chapter for details.

3.3. Reading and Writing
Variables in TAAC-1
Programs

In order to read or write a variable in a TAAC-1 program, the host
program must have the address of the variable in TAAC-1 memory
space. To get this information, the variable must be made global, as
shown in the preceding program fragment for the variable iof1lag.
When TAAC-1 programs are linked, the names and addresses of all
global variables are written to a .map file. The entry for ioflag in the
.map file might look like:

SY _ioflag 0x30000000

This the absolute address in TAAC-1 memory space of the variable
ioflag. Its address indicates that it is in SRAM (Scratchpad RAM)
memory. (For more information about TAAC-1 memory space, see
the hardware chapter.) To simplify the usage of this information, a

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 3 — TAAC-1 Programming 39

Using Host Library
Read/Write Routines

More Direct Access
to TAAC-1 Memory

utility program, tamakedef£, reads a .map file and produces a header
(.n) file whose entry for iof1ag might look like:

#define TC_ioflag 0x30000000

If you include this header file in your host program, you can write to any
global variable in your TAAC-1 program, giving as the address the
variable name prefixed by Tc_ and using any of the host library memory
access routines, such as ta_read() and ta_write(). This symbolic
referencing eliminates any need to know absolute TAAC-1 addresses.

TAAC-1 address space is mapped to the host’s virtual memory space.
As aresult, transfer of data between the host and TAAC-1 is
straightforward. Because the TAAC-1 local bus address space is
larger than the VME address space, it is necessary to select which
type of TAAC-1 memory you want to access: scratchpad memory,
data/image memory, program memory, or control registers. The host
library memory access routines set the VME interface slave mode
register (SMR) to address the correct memory type, and then perform
the read or write.

NOTE: The TAAC-1 cannot act as VME bus master and read or write
host memory.

It is sometimes desirable to avoid the relatively small overhead of the
host library read/write routines, especially when you are randomly
accessing TAAC-1 variables from the host, rather than reading or
writing entire arrays. The host library has two routines for this
purpose, ta_map () and ta_use_map().

ta_use_map () sets up the SMR to address a particular TAAC-1
memory type. It is used in conjunction with ta_map (), which returns
the host virtual memory address for the specified TAAC-1 memory
address. The following code fragment illustrates the process of writing
to variables in TAAC-1 data/image memory.

(assume TAAC-1 is open and initialized; tah points to the
TA_HANDLE interface structure)

sun Revision A of 15 April 1989

microsystems

3-10 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

#define TAACDEST 0x100000
{

int *p;

int a[100]:;

char *filename;

if((p = ta_map(tah, TAACDEST))==NULL)

exit (-1);
if (ta_use_map(tah, TAACDEST)==TA FAILURE)
exit (-1);
pl(0] = af0];
= a[3];

p (4]

}

ta_use_map () must be called each time the slave mode register is
changed (that is, after any other host library routine has been called).
These routines can also be used with the address of a variable listed in
the .map file, as discussed in the previous section. For most cases, use
the read/write routines provided with the library instead of these lower-
level routines, since they add little processing overhead.

Note: direct data transfers between a file and TAAC-1 memory are not
supported. While ta_map () and ta_use map () can still be called, the
data must be moved through an intermediate memory array.

3.4. Data Types

Since the TAAC-1 is a word-addressable machine, the smallest data

type is 32 bits; this applies to types char, short, int, and long. The 32-
bit data word requirement may affect your program in one or more of the
ways discussed in this section.

Data Transferred from

a Host Program
If you transfer an array of type char to TAAC-1 memory, it will be
transferred using 32-bit writes. An array containing a sequence of alpha,

blue, green, and red bytes:

byte 0 alpha

byte 1 blue

byte 2 green

byte 3 red

byte 4 alpha

byte § blue

sun Revision A of 15 April 1989

microgystems

TAAC-1 User Guide

Chapter 3 — TAAC-1 Programming 3-11

Structures Within
TAAC-1 Programs

3.5. Window
Management

would be transferred to TAAC-1 memory as a series of 32-bit words,
in this order:

31 0

alpha blue green red

Structures inside programs compiled by the TAAC-1 C compiler may
have a different size than they would have in the same program
compiled by the host C compiler. This structure, for example, cannot be
redefined as a single int, since on the TAAC-1 it is considered to
contain four 32-bit values:

struct {
char red;
char green;
char blue;
char alpha;

There are two ways to see TAAC-1 video in a Sun window:

* In your host application program, create a window using SunView
or any window system, and fill its canvas with a solid TAAC-1
keying color.

* Use the TAAC-1 tatool utility, which provides a SunView
window for displaying TAAC-1 video. tatool is useful for
standalone TAAC-1 programs and for host programs without a
window interface. See the utilities chapter for a guide to the use of
tatool.

The TAAC-1 host library contains routines to display a TAAC-1
canvas in a Sun window and to control which portion of TAAC-1 image
memory is displayed. Here are descriptions of the key routines:

S ll n Revision A of 15 September 1988

microsystems

3-12 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

ta_taac_canvas()

Displays a TAAC-1 canvas that has been created by the SunView
window_create () function, and fills it with the Sun keying color from
the configuration file $TAAC1/hardware taconfig.<hostname>.
ta_taac_canvas() alsocalls ta_set display() and ta set view();
see their descriptions below and in the host library chapter of the
TAAC-1 Libraries manual..

The tatool utility calls window _create() and ta_taac_canvas () to
create its window. For information on window create (), see the
SunView Programmer’s Guide.

As an alternative to ta_taac_canvas (), the window functions can be
provided by any window system without affecting communication with
TAAC-1 routines. The TAAC-1 demo library contains unsupported
window routines that can be used by persons unfamiliar with

SunView. They are described in the demos chapter of the TAAC-1
Libraries manual.

ta_realign()

Reads the current location of the TAAC-1 canvas and moves the
TAAC-1 video to match it, by calling the host routine

ta_set_window (), described below. This function can be used after you
have called ta_taac_canvas(). ta taac_canvas () takes care of
moving the TAAC-1 video in response to window events created by
using the mouse; ta_realign () must be called only when the window
moves without an event occurring (e.g., an explicit program-directed
move).

ta_set_view()

Sets the 2D memory location (in pixel coordinates) that is to be
mapped to the first visible pixel in the upper left corner of the displayed
video. Location (0,0) is the upper left corner of TAAC-1 image memory
and is the default set by ta_init () and by ta_taac _canvas().

ta_set_display()

Sets the output video and sync sources, according to the hardware
configuration file. It can set Sun-only, TAAC-1-only, or mixed TAAC-
1 and Sun video. In a windowing situation, ta_init () sets Sun video

S ll n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 3 — TAAC-1 Programming 3-13

Window Management
Example

as the default. Therefore, your program may need to call
ta_set_display () to display TAAC-1 or mixed video.

ta_taac_canvas() calls ta_set_display() with the argument Ta oN,
which displays mixed video in single-configuration systems or TAAC-
1 video in dual-configuration systems. Programs that call
ta_taac_canvas () donotneed to call ta set display().

ta_set_window()

Sets the location and dimensions of the TAAC-1 window on the

screen. If the view of the TAAC-1 frame buffer is to remain constant

as the Sun window is moved, this function can be called to reset the
window parameters. This function is only for programs that set up
windows but do not call ta_taac_canvas () or the unsupported window
routines.

An example will further clarify the window functions. Assume the part
of the TAAC-1 frame buffer to be displayed begins at the two-
dimensional address x=256, y=1024 in TAAC-1 data/image memory
and is 512 x 512. The Sun window (to be created) is also 512 x 512.
The program shown below creates a SunView window containing a
TAAC-1 canvas and maps (256, 1024) to be the first displayed pixel,
as shown in the figure that follows. window create () and

window main_ loop() are SunView functions.

#include <suntool/sunview/h>
#include <suntool/canvas.h>
#include <taacl/taio.h>
Frame tatoolframe;

Canvas tatoolcanvas;
TA_HANDLE *tahandle;

main (argc, argv)
int argc;
char *argv(];

{

if (!tahandle = ta_open (0))) {
printf ("Error opening TAAC-1\n");
exit (1);

}

if (ta_init (tahandle)) {

printf ("Error initializing TAAC-1\n");
exit (1) ;

}

S ll n Revision A of 15 September 1988

microsystems

3-14 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

Figure 3-4

3.6. Buildinga TAAC-1
Program

tatoolframe = window_create (NULL,FRAME) ;
tatoolcanvas = window_create (tatoolframe, CANVAS, 0);

/* display TAAC-1 canvas */
ta taac_canvas (tahandle, tatoolframe, tatoolcanvas) ;

/* set first displayed pixel = 256, 1024 */

ta set view (tahandle, 256, 1024);

window _main loop (tatoolframe);
ta _close (tahandle);
}

For more information about the supported window routines, see the
windows section of the host library chapter of the TAAC-1 Libraries

manual.

Display of TAAC-1 Video in Sun Monitor

TAAC-1 Video Memory Sun_Monitor

1024 1152

kS

900

2048
(256,1024)

kS

The chart on the next page illustrates the steps in building software for
the TAAC-1 from a C source. The initial step is to compile the code.
The TAAC-1 C compiler generates an assembly-code source file and
automatically invokes the assembler. The resulting object files are then
linked to create a load program (. abs file). The load program is loaded
at runtime by the host program using the library routine ta_run(), or as
a stand-alone routine using the utility program tarun.

S ll n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 3 — TAAC-1 Programming 3-15

Figure 3-5 Building a TAAC-1 Program

TAAC-1 C Source Program
(file.tc)

Compile
and
Assemble

tace

TAAC-1 Assembly Program
(file.asm)
TAAC-1 List File
(file.1lst)

Y

TAAC-1 Object Program
(file.obj)

Link

TAAC-1 Map File
(file.map)

Create Header File
TAAC-1 Load Program

(file.abs)

tamakedef

TAAC-1 Map File
(file_map.h)

Host C Program

#include "file_map.h"
ta_run(tahndl,"file.abs")

@ sun Revision A of 15 September 1988
microsystems

3-16 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

The linker also produces a .map file with global variable and subroutine
address locations. The utility program tamakedef produces a header
file from the .map file for inclusion by the host program. The tutorial
contains example .map and header files.

The taabs2o Utility
You can link a TAAC-1 absolute file (.abs) with a host program,
eliminating the need to load a separate .abs file. The utility taabs2o
creates a .o file from a . abs file. This file can then be linked into the
host program.

To load an absolute file that has been linked with a host program, call:

ta_runm (tahndl);

instead of:

ta_run (tahndl, "file.abs"):
All other steps in the process remain the same.

The Makefile in the upcoming tutorial uses the taabs2o utility to link
the TAAC-1 .abs file into the host executable.

TAAC-1 Development
Notes
There are three ways to enhance program efficiency on the TAAC-1:

« Using the built-in functions of the TAAC-1C compiler for fast
access to specialized TAAC-1 components. These functions
produce in-line code for direct access to the lookup tables, the
vector ports, and AC register reads and writes, without the
overhead of subroutine calls.

« Programming with the TAAC-1 library routines, which perform
mathematical operations, graphics and image processing functions,
and control functions. These routines have been optimized for the
TAAC-1.

« Inserting in-line assembly code within C programs. In-line code is
often substituted for program inner loops.

S ll n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 3 — TAAC-1 Programming 3-17

3.7. Tutorial

Host Program

The tutorial describes two interdependent programs, one running on the
host and the other running on the TAAC-1. The host program prompts
the user for information, sends input data to the TAAC-1, and loads
and runs the TAAC-1 program. The TAAC-1 program draws an image
in TAAC-1 data/image memory which can be displayed in a Sun
window using the tatool utility. You can select color bars, greyscale,
or a solid-color image. If you select color bars or greyscale images,
you can select the density of the individual bars. If you choose the
single-color image, you can select the color.

To use this tutorial, you need:

* A Sun 3 or Sun 4 workstation with a TAAC-1 and its associated
software. The tutorial assumes the use of a single-color monitor
and Suntools software.

* A working knowledge of the C language.

* Basic UNIX and Sun experience, including familiarity with a text
editor. Familiarity with make is also helpful.

The source files described in this tutorial are contained in the directory
$TAAC1/tutorial and are printed at the end of this section. The
tutorial assumes that you have the environment variable Taac1
assigned correctly, and that you have the directory $TAAC1/bin added
to your path. See the TAAC-I Software Installation Guide, part
number 800-2441-xx, for details.

For the host program, see the file $TAAC1/tutorial/colors.c, which
contains these steps:

* open alink to the TAAC-1

* initialize the TAAC-1

* load and run the TAAC-1 program

* prompt the user for input and send data to TAAC-1 memory

* set the handshaking flag to tell the TAAC-1 to proceed

@ sun Revision A of 15 April 1989
microsystems

3-18 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

Items to Note in the Host
Program

#include <taacl/taio.h>

This file contains the definitions and declarations used by the TAAC-1
host library.

#include "colorbar map.h"

This file contains the addresses of all global variables declared in the
TAAC-1 program. The utility tamakedef reads the .map file generated
by the TAAC-1 linker and produces a header file consisting of the
name of each TAAC-1 global variable, prefixed by Tc_, and its
absolute TAAC-1 memory address. The library read/write routines

use these addresses to access TAAC-1 memory.

TA_HANDLE *tahndl;

ta_open returns a pointer to this structure, which is defined in taio.h.
This pointer is the first argument in other host library routines.

ta_open(), ta_close()

These routines open and close the link to the TAAC-1. ta_open must
be the first host library routine called.

ta_init ()

Sets the default values in the TAAC-1. This is usually the second
host library routine called.

ta_set_display()

Sets the display to Sun video, TAAC-1 video, or mixed (TAAC-1
video in a Sun window). ta_init sets the default to Sun video only,
which must be changed to view TAAC-1 video.

ta_runm()

Loads and runs the TAAC-1 program which has been linked into the
host program.

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide

Chapter 3 — TAAC-1 Programming

3-19

TAAC-1 Program

Items to Note in
colorbar.tc

ta_read(), ta write()

Reads and writes TAAC-1 memory. These routines write to 1D
addresses. To load an image to TAAC-1 memory, see the host library
chapter listing (in the TAAC-1 Libraries manual) for ta_write2d().

TC_ioflag

TC_ioflag is defined to be the address of the handshaking flag on the
TAAC-1. When the host has written the input data to TAAC-1
memory, it sets the handshaking flag in TAAC-1 memory to tell the
TAAC-1 to proceed. The TAAC-1 clears this flag to notify the host
that it has finished.

usleep ()

The host program calls usleep(100) inside the loop that checks the
handshaking flag, to avoid tying up all the host processor’s resources.

The TAAC-1 program, contained in $TAAC1 /tutorial/colorbar. te
consists principally of standard C code. It performs these steps in a
continuous loop:

¢ Clear the handshaking flag (iof1ag) and loop reading this flag,
waiting for the host to send input data. The host will set this flag
when it has finished writing to TAAC-1 memory.

* When the handshaking flag has been set by the host, call the
appropriate image routine (color bars, greyscale wedges, or solid
color).

#include <taacl/builtin.h>

This file contains defines used by TAAC-1 programs, including macro
definitions for built-in functions. The built-in functions are a set of
macros that directly address specific elements of the TAAC-1
processor. These macros can be used to write to TAAC-1 registers
such as Address Count (AC), DRAM Mode (AM), and the Barrel

Shift Input (BR), and also to write to data/image memory using the AC
register.

sSsun Revision A of 15 April 1989

microsystems

3-20 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

main ()

Notice that both colors.c and colorbar.tc have amain (). Each
program is compiled and linked separately; in addition, the TAAC-1
absolute (executable) file can be linked into the host program so that it
can be easily downloaded from the host, avoiding file I/O and
elminating the need to maintain two executable files for the application
task.

ioflag, command{3]

These global variables, along with their addresses, are written to the
.map file by the TAAC-1 linker talink. ioflag is the handshaking flag
used to synchronize with the host program.

output (WR_AM, TA_ AM2D)

Sets the DRAM Mode Register (AM) in the TAAC-1 for 2D
addressing. output () is a built-in function used to write to specified
TAAC-1 registers. output () is a built-in compiler function; TA_aM2D
is defined in the builtin.h include file.

set_ac(), upd_ac(), write_ac()
The first two functions set and update, respectively, the Address Count
Register (AC). write_ac () writes to the address contained in AC.
The three functions together write each pixel of the image. All three
are built-in compiler functions.

Building and Running

the Program
The steps used to build and run this tutorial program are:

1. Compile and link the TAAC-1 program.

2. Use the tamakedef utility to generate a header file containing
TAAC-1 global addresses.

3. Use the taabs2o utility to convert the TAAC-1 absolute image file
to an object file that can be linked into a host program.

4. Compile and link the host program.

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide

Chapter 3 — TAAC-1 Programming 321

Compile and Link the
TAAC-1 Program

5. Execute the host program.

The TAAC-1 program must be compiled and linked first, since the
TAAC-1 linker generates global variable addresses needed by the
host program. To compile colorbar.tc, enter:

)

% tacc —c¢c —-fsingle colorbar.tc

The TAAC-1 C compiler (tacc) generates the file colorbar.asm,
containing the assembly language source code, and then goes on to
assemble the .asm file, generating colorbar.obj, the relocatable
object module. (.obj files are analogous to the .o files produced by the
standard C compiler.)

The -c option includes C source code as comments in the assembly
source and listing files. The -fsingle option ensures that floating-
point operations are single-precision and passes float arguments
without converting them to doubles. This program does not declare
any floating-point variables; however, it is a good idea to specify
-fsingle as a matter of course for all programs, except when you want
double precision, which is not yet supported. For the compiler to
produce an assembly code listing, use the -1 option. The C compiler
chapter describes other compiler options.

After compilation, the object files (in this case, only one file) need to be
linked. Enter:

Q

% talink colorbar

The TAAC-1 linker, talink, produces an absolute image file with a
.abs suffix. The image file is formatted for the TAAC-1. The linker
also produces a .map load map file containing names and TAAC-1
memory addresses of program segments and global symbols in the
program. See the linker chapter for more on map file formats. You can
specify the absolute file name using the —o option, and the load map file
name by using the -m option. If you omit these options, the linker by
default will use the name of the first file in the link list. The command:

% talink -o colorbar.abs -m colorbar.map colorbar.obj

would produce the same result as the simpler talink command above.

S ll n Revision A of 15 September 1988

microsystems

3-22 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

Use tamakedef to
Generate an Include File
for the Host Program

Figure 3-6

If this tutorial program used any of the mathematical, graphics, image
processing, or control functions from the TAAC-1 library, the link list
would also need to contain -1taacl.

The tamakedef utility reformats the .map file into a set of defines that
can be included in a host C program. Run tamakedef by entering:

3

% tamakedef colorbar.map colorbar_map.h

The header (.h) file contains defines for the TAAC-1 memory address
of each routine and global variable defined in colorbar.tc. The load
map generated by the linker, and the corresponding header file
produced by tamakedef, are shown below:

Examples of Load Map and Header Files

colorbar.map:

SY regdump 0x5

SY main 0x399
SY _S.main 0x377

SY cstart_ 0x0

SY _S.maksolidcolor 0x3f6
SG c_startup 0 0x0 Ox4

SG regdump_sram 1 0x30000000 0x30000095
SY DPCONTROL 0x30000000

SY DUMPLOC 0x30000001

SG colorbar data 1 0x30000096 0x300000al
SY _ioflag 0x3000009%e

SY command 0x3000009f

colorbar map.h:

SG regdump code 0 0x5 0x376 #define TCregdump 0x5

#define TC main 0x399

SG colorbar code 0 0x377 0x41l1 #define TC makcolorbar 0x3bd

#define TC makgreybar 0x3ed
#define TC maksolidcolor 0x40c

SY makcolorbar 0x3bd #define TC cstart_ 0x0

SY _S.makcolorbar 0x39%a #define TCDPCONTROL 0x30000000
SY makgreybar 0x3ed #define TCDUMPLOC 0x30000001
SY _S.makgreybar 0x3cé6 #define TC_ioflag 0x3000009%e
SY maksolidcolor 0x40c #define TC command 0x3000009f

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 3 — TAAC-1 Programming 3-23

Use taabs2o to Convert
the Absolute Image File
to an Object File

Compile and Link the
Host Program

Execute the Host Program

The taabs2o utility converts . abs files to . o files suitable for linking
with a host program. The conversion produces a single executable
containing both host and TAAC-1 code. When the conversion is
complete, the function ta_runm() loads the TAAC-1 program into
TAAC-1 memory and begins its execution. To use taabs2o, enter:

% taabs2o0 colorbar.abs colorbarabs.o

It is also possible to skip this step and keep separate executables, one
for the TAAC-1 and one for the host. See the utilities chapter for
details.

The TAAC-1 portion of the tutorial is complete. Now we can compile
the host program, which “‘includes’’ the header file produced by the
tamakedef utility. To compile the host portion, enter:

% cc -o colors colors.c colorbarabs.o -ltaacl

-1ltaacl in a host link command refers to the TAAC-1 host library of
initialization, processor control, memory access, and video control
routines.

The Makefile in the $TAAC1/tutorial directory compiles and links all
files in this tutorial.

This program must be executed from within a Suntools environment, if
the TAAC-1 video is to be displayed in a Sun window. Before
executing the program, open a TAAC-1 display window by entering:

% tatool -t&

Move this window, if necessary, to the upper left corner of your screen,
because the initialization routine ta_init () in the host program maps
(0,0) of the TAAC-1 video to the upper left corner of the Sun monitor.

Execute the program by entering:

% colors

sSsun Revision A of 15 September 1988

microsystems

3-24 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

The program prompts you to choose the display type: colorbars,
greyscale, or solid color; for colorbars or greyscale, it also asks for bar
density; for solid color images, it asks for a color.

The source code and Makefile for this program appear on the next
pages.

S ll n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 3 — TAAC-1 Programming 325

#**********‘k‘k‘k‘k***‘k*‘k******

$x *
#* Copyright (c) 1988, Sun Microsystems Inc., Raleigh, North Carolina *
#* *
#* *

#****************************‘k***************************************‘k***‘k*****
@ (#)Makefilel.5 88/05/15

makefile for colorbars

include the predefined rules for building TAAC-1 programs

include /usr/include/taacl/makerules

define the constants

CFLAGS = -0 # flags for cc

LIBS = ~-ltaacl # libraries for host program
OBJS = colors.o colorbarabs.o# object files for host program

TCFLAGS = -c -fsingle# flags for tacc

TLFLAGS = # flags for talink

TLIBS = -ltaacl # libraries for TAAC-1 program

TOBJS = colorbar.obj # object files for TAAC-1 program

compile (implicit) and link for host program
colors: $(OBJS)
$(CC) $(CFLAGS) -o colors $(OBJS) $(LIBS)

dependencies for host program
colors.o: colors.h colorbar map.h

#create a .o file from a TAAC-1 .abs file (TAABS20 is defined in makerules)
colorbarabs.o: colorbar.abs
$ (TAABS20) colorbar.abs colorbarabs.o

#create a .h file from the TAAC-1 .map file (TAMAKEDEF is defined in makerules)
colorbar map.h: colorbar.map
$ (TAMAKEDEF) -d -c colorbar.map colorbar map.h

compile (implicit) and link TAAC-1 program (TALINK is defined in makerules)
makerules also describes how to make a .obj file from a .tc file
colorbar.abs colorbar.map: $(TOBJS)

$(TALINK) $(TLFLAGS) $(TOBJS) —-o colorbar.abs $ (TLIBS)

dependencies for TAAC-1 program
colorbar.obj: colors.h

clean:
rm —-f $(TOBJS) $(OBJS) colorbar.asm colorbar.abs colorbar map.h \
colorbar.map colorbar.lst core *%

install: colors

spotless: clean
sccs clean

S u n Revision A of 15 September 1988

microsystems

3-26

Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

/**/

/* */

/* Copyright (C) 1988, Sun Microsystems */

/* x/
/**‘k**‘k*k’k*"k‘k**'k’k**‘k********’k*****’k*’k*'k***’k‘k‘k*********************‘k*‘k****‘k/

/% */

/*

* Tutorial Program - colors.c (Host Code)

*

* Loads TAAC-1 program, asks for user input and

* sends data to TAAC-1, which generates the images.

*

*/
#include <stdio.h>
#include <taacl/taio.h> /* TAAC-1 host include file */
#include “colors.h" /* colorbar defines */
#include "colorbar map.h" /* global defines from tamakedef */
#define GO 1 /* host tells TAAC-1 to proceed */
main ()

{

TA HANDLE *tahndl; /* Handle returned from ta_open */
TA HANDLE *taacstartup (); /* routine to open, init TAAC-1 */

void taacgo ();

void taacdone ():;

void write_error ();

void read_error ();

int command[3]; /* command words for TAAC-1:
word 0: bartype — COLORBAR,

GREYSCALE, or SOLIDTYPE

word 1: colorbar density
word 2: color index for solid color

*/
/* local copies of command words */
int bartype; /* COLORBAR, GREYSCALE, or SOLIDTYPE */
int barden; /* color bar density */
int colorind; /* color index for solid color */
int ioflag:; /* flag value */
int tastatus; /* returned status */

/* open, initialize, load, run TAAC-1 */
tahndl = taacstartup ()

/* get user input and send commands to TAAC-1 */

S ll n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 3 — TAAC-1 Programming 327

while (1) {

bartype = -2;
while ((bartype < QUIT) || (bartype > MAXTYPE)) {
/* get test type selected */
printf (" Enter test type.[0-2 - Imagetype, 3 - Help, =1 - Quit]> ");
scanf ("%d", &bartype) ;
}
command[0] = bartype;

switch (bartype) {

case COLORBAR: /* make a color bar */
barden = -1;
while ((barden < 0) || (barden > 7)) {
printf (" Enter colorbar density.[0-7]> ");

scanf ("$d", &barden) ;

}
command(l] = barden;

break;
case GREYSCALE: /* make grey scale */
barden = -1;
while ((barden < 0) || (barden > 2)) {
printf (" Enter grey bar density.[0-2]> ");

scanf ("¥d", &ébarden) ;
}
command(l] = barden;
break;

case SOLIDTYPE:

colorind = -1;

while ((colorind < 0) || (colorind > 7)) |
printf (" Enter number: \n");
printf (" 0 black\n");
printf (" 1 blue\n");
printf (" 2 green\n") ;
printf(" 3 yellow\n") ;
printf (" 4 red\n");
printf (" 5 magenta\n") ;
printf (" 6 cyan\n") ;
printf (" 7 white\n");

scanf ("%d", &colorind) ;

}
command([2] = colorind;

break;
case QUIT: /* do nothing *x/
break;
case HELP:
default: /* if input wrong character, same as help */
printf (" Options include:\n");

sun Revision A of 15 April 1989

microsystems

3-28 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

printf (" -1 Quit\n");

printf (" 0 Colorbars\n");
printf (" 1 Grey Scale\n");
printf£ (" 2 Solid Color\n");
printf (" 3 This Help Menu\n");
break;

} /* end switch */

if (bartype == QUIT) ({
break;
}

else {
/* wait for TAAC-1 to finish processing previous command
Note: TAAC-1 program, loaded in taacstartup routine,
will set value at address TC_ioflag to 0 when ready.

Variables with name TC_... are defined in file
colorbar_map.h created by tamakedef utility. *x/
ioflag = 1;

while (ioflag) {
if ((tastatus = ta_read (tahndl, &ioflag, sizeof(ioflag),

TC ioflag)) != sizeof(ioflag))
read_error (tastatus);
usleep(100);

}

/* send command words to TAAC-1 */
if ((tastatus = ta_write (tahndl, command, sizeof (command),
TC_command)) != sizeof (command)) {
write_error (tastatus);

}

/* set handshaking flag to tell TAAC~1 to proceed */
ioflag = GO;
if ((tastatus = ta_write (tahndl, &ioflag, sizeof (ioflag),
TC_ioflag)) != sizeof(ioflag)) {
write_ error (tastatus):;

}
} /* end while (1) */

/* wait for TAAC-1 to finish */
while (ioflag) {
if ((tastatus = ta_read (tahndl, &ioflag, sizeof(ioflagq),
TC ioflag)) !'= sizeof(ioflag)) |
read _error (tastatus);
}
usleep(100) ;

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide Chapter 3 — TAAC-1 Programming 3-29

/* cause TAAC-1 processor to loop at PC = 0 */
ta_zero(tahndl);

/* turn off TAAC-1 video */
ta_set_display (tahndl, TA DEFAULT);

/* close TAAC-1 link */
ta_close(tahndl);

} /* end main*/

/********taacstartup********/

/* open TAAC-1 and begin program execution */
TA HANDLE *taacstartup ()

{
TA_HANDLE *tahndl; /* handle returned from ta_open() */
int tastatus; /* returned status */

/* open TAAC-1 link */

if ((tahndl = ta open (0)) == NULL) ({
fprintf (stderr, "Error opening TAAC-1\n");
exit (-1);

}

if ((tastatus = ta_init (tahndl)) != TA SUCCESS) {
fprintf (stderr, "ta_init failed, returned %d\n", tastatus);
exit (-1);

}

if ((tastatus = ta_set_display (tahndl, TA_ON)) != TA SUCCESS) {
fprintf (stderr, "ta_set_display failed, returned %d\n", tastatus);
exit (-1);

}

if ((tastatus = ta_runm (tahndl)) != TA SUCCESS) {
fprintf (stderr, "ta runm failed, returned %d\n", tastatus);
exit (-1);

}
return (tahndl);

[*xKkkKxkkkyrite error*kxxxkkxx/

void write_error(status)

int status;

{
fprintf (stderr,"ta_write failed, returned %d\n",status);
exit (-1);

S un Revision A of 15 September 1988

microsystems

3-30 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

/*****‘k**read—error********/

void read error(status)

int status;

{
fprintf (stderr, "ta read failed, returned %d\n",status);
exit (-1);

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 3 — TAAC-1 Programming 3-31

/**/

/* */
/* Copyright (C) 1988, Sun Microsystems */
/* */
/**/
/* */
/*

* Tutorial Program - colorbar.tc (TAAC-1 code)

*

* Receives user input from the host program and creates

* simple images.

*

* Use 'tatool ~t’ to view the results in a TAAC-1 window.

*

*/

#include <taacl/builtin.h>
#include "colors.h"

#define ADD ONE_RGB 0x00010101
static int rgba{8] = { BLACK,BLUE, GREEN, YELLOW, RED, MAGENTA, CYAN,WHITE};

void makcolorbar();
void makgreybar();
void maksolidcolor();

/* Host-TAAC globals */
int ioflag:; /* Host-TAAC handshaking flag */
int command[3]; /* command words for TAAC-1:
word 0: bartype - COLORBAR,
GREYSCALE, or SOLIDTYPE
word 1l: colorbar density
word 2: color index for
solid color */

main ()
{
register int bartype; /* bartype - COLORBAR,
GREYSCALE, or SOLIDTYPE */

/* Change DRAM addressing MODE to 2-D */

output (WR_AM, TA AM2D);

/* Clear ioflag to tell host the TAAC-1 is ready; the host
will set this flag when data is ready */

ioflag = 0;

while (1) {

S un Revision A of 15 September 1988

microsystems

3-32 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

while(ioflag == 0); /* wait to be reset from host */

bartype = command[0];
switch (bartype) {
case COLORBAR
makcolorbar (command(1l]):;
break:

case GREYSCALE
makgreybar (command[1]);
break;

case SOLIDTYPE
maksolidcolor (command[2]);
break;

} /* end of switch bartype */
ioflag = 0; /* Signal host that TAAC-1 is done */
} /* end of loop forever */
} /* end main*/
/********COLOR BARS********/

void makcolorbar (barden)

register int barden;

{
register int y;
register int width;
register int num bars;
register int bar;
register int barx;
register int color = 0;

width = (1 << (7 - barden)):; /* width of each bar in pixels */
num bars = (1 << (2 + barden)); /* number of bars across 512 pixels */
for (y=0; y < IMAGESIZE; y++) { /* start y loop */

set_ac (AC_LDX|AC_LDY|AC LDZ, y<<16);
for (bar=0; bar < num bars; bar++) { /* start bar loop */

color = rgbal(bar & 71; /* color this bar */

for (barx = 0; barx < width; barx++) ({

write ac(color); /* write pixel */
upd_ac (AC_INCX | AC_INCY); /* increment x adrs */
S u n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 3 — TAAC-1 Programming 3-33

}

/* end for each pixel this bar */

} /* end for each bar this line */

} /* end for each line */
} /* end makcolorbar */

[**kkKkxkx*GREY SCALEX**x*%k%%/

void makgreybar (barden)

register int

{
register
register
register
register
register
register

width
num_bars

for (y=0;

b

i
i
i
i
i
i

(

arden;

nt y;

nt width;

nt num bars;
nt bar;

nt barx;

nt color = 0;

1 << (2 - barden)):; /* width of each bar in pixels */
(1 << (7 + barden)); /* number of bars across 512 pixels */

y < IMAGESIZE; y++) { /* start y loop */

/* load address of (0, y) to AC register. Note that y address
must be shifted left 16 bits */
set_ac (AC_LDX|AC_LDY|AC LDZ, y<<16);

for (bar=0; bar < num bars; bar++) {/* start bar loop */
for (barx = 0; barx < width; barx++) {

}

write ac(color); /* write pixel */
upd_ac (AC_INCX | AC_INCY); /* increment x adrs*/

/* end for each pixel this bar */

/* set new color *x/
if ((color & OxffL) == OxffL)
color = 0;
else

(¢

olor += ADD ONE_RGB;

} /* end for each bar this linex*/

color =

0;

} /* end for each line */
} /* end makgreybar*/

[F K Kkkkk** SOLIDCOLORX* XX xx k% /

void maksolidcolor(colorind)
register int colorind;

S ll n Revision A of 15 September 1988

microsystems

3-34

Chapter 3 — TAAC-1 Programming

TAAC-1 User Guide

register int x,y;
register int color;

color = rgba[colorind];

/* Load starting address of (0, 0) to AC register */

set_ac(AC_LDX | AC_LDY | AC_LDz, 0);

for (y=0; y < IMAGESIZE; y++) { /* start y loop */

/* load address of (0,

V) to AC register. Note that y address

must be shifted left 16 bits */
set_ac(AC_LDX|AC LDY|AC_LDZ, y<<16);

for (x = 0; x < IMAGESIZE; =x++) {
/* */

write ac(color); write pixel

upd _ac (AC_INCX | AC_INCY); /* increment x adrs*/
} /* end for each pixel this scanline */
upd_ac (AC_INCZ) ; /* increment y adrs */

/* end for each line */
/* end maksolidcolor */

sun

microsystems

Revision A of 15 September 1988

TAAC-1 User Guide

Chapter 3 — TAAC-1 Programming 3-35

3.8. Example Programs:
Introduction

3.9. Example Programs:
Double-Buffering,
Channel-Buffering

The remaining sections of this chapter present examples of TAAC-1
programs used to:

* Draw double-buffered and channel-buffered images
* Draw an image in the overlay channel
* Demonstrate the blink mask

* Demonstrate the graphics library

The example programs use the TAAC-1 library and must be linked
with the option -1taac1. The source files, and a makefile called
Makexample, are available in the directory $TaAC1/tutorial. To
compile and link these programs, use the command:

o

% make —-f Makexample all

db.abs, dbchan.abs, overlay.abs, and blink.abs are standalone
TAAC-1 programs, without a host process. To run these programs,
use the tainit utility to initialize the TAAC-1 and tatool to callup a
TAAC-1 window . Then use the tarun utility to run the program:

a®

tainit -m
tatool -té&
tarun <absolute file name>

o\

o

For more information about these utilities, see the utilities chapter.

The last example describes the use of the graphics library, with a host
process (poly) and a TAAC-1 process (drawpoly.abs). With a
single-monitor configuration, use tatool to view the displayed results.

Double-buffering is often used to facilitate the perception of smooth
motion or transition from one image to the next. The viewer typically
sees one image while the next image is being generated. On the
TAAC-1, you can double-buffer spatially or in depth:

» Spatial double-buffering. Define two buffers in different areas of
data/image memory (DRAM). Use t_set_view() to display the

sun Revision A of 15 September 1988

microsystems

3-36 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

Double-Buffering in
Banks A and B

Items to Note in db. tc

contents of one buffer while your program draws in the other buffer;
then swap buffers and repeat. This method can be used for full-
color or pseudocolor images.

e Channel-buffering (double-buffering in depth). Display a
pseudocolor image from a single channel (red, green, blue or alpha)
of image memory, while you are generating the next image in
another channel of the same area of memory. With this method, the
X,y addressing stays the same, no matter which buffer you are
using.

Both double-buffering examples generate the same image, a rectangle
that moves in a circular motion, using the t rect () TAAC-1 library
routine. The first example uses two separate DRAM buffers, one in
Bank A and one in Bank B, and changes the y-offset variable to write
to one or the other of these buffers. The second example alternates
writing and displaying between the red and green channels. In the code
for both examples, important lines appear in boldface text.

The first example program, db . abs, calls the library routine t_rect ()
to draw a full-color rectangle. While t_rect () is drawing in the work
buffer of Bank A, the program is displaying out of the buffer in Bank B.
Bank A of memory contains y addresses 0-1023; Bank B contains y
addresses 1024-2047. When t_rect () is finished, the work buffer and
display buffer are swapped.

The basic algorithm for double buffering between Bank A and Bank B is:

call t_set_view() to set the display buffer
while (...)
wait for vertical interval, to be sure t_set_view () is done
erase the working buffer
draw into the working buffer
call t_set_view() to display the working buffer

#include <taacl/t math.h>

t_math.h contains the function prototypes for the TAAC-1
mathematical library functions.

yoff = 0;

S ll n Revision A of 15 September 1988

microsystemns

TAAC-1 User Guide Chapter 3 — TAAC-1 Programming 3-37

Initializes yof £, the y-offset to the working buffer.

t_set_view ()

Sets the address of the first displayed pixel. Takes effect at the end of
the next vertical interval.

yoff = 0x400;

Toggles yof£ between 0 and 1024, to swap working buffers.

t_erase (0, yoff, 512, 512, BLACK);

Erases the working buffer using serial writes. Data/image memory is
divided into two banks, Bank A (y addresses 0-1023) and Bank B (y
addresses 1024-2047). There is a high-speed port (vector port)
dedicated to each bank. The display controller has access to these
ports, for image refresh; and the processor has access to the same
ports, for fast serial reads and writes. However, the processor should
access the same bank of memory that is being displayed only during
the vertical blanking interval.

In this example, therefore, t _erase must take place during the vertical
blanking interval or gfter the vertical interval, when t_set_view will
have swapped the display and working buffers.

t_rect (x, y, 100, 100, CYAN):;

Library routine t_rect () draws arectangle. Adding yoff to the y
coordinate allows t_rect to write to the current working buffer. For
more information, refer to the graphics section of the TAAC-1 library
chapter.

sun Revision A of 15 September 1988

microsystems

3-38 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

/*************‘k**/

/* */
/* Copyright (C) 1988, Sun Microsystems */

/* */
/**‘k*******‘k’k********‘k‘k*****‘k*******************‘k**’k*‘k***********‘k**‘k****/
/* */

/* db.tc: draws a double-buffered rectangle at the end of an (imaginary)
100-pixel arm that sweeps around in a circle with a center at (256, 256) */

#include <taacl/builtin.h>
#include <taacl/t math.h>

/* define colors */
#define BLACK 0x0
#define CYAN Oxffff00

#define DEG2RAD 3.14159/180./* degrees-to-radians conversion */

#define RADIUS 100. /* length from center to upper left
corner of rectangle */

#define XYCENTER 256 /* center coordinates */

#define INC 2. /* increment in degrees */

main ()

{
register int x,y; /* x and y coordinates */
register float deg, radians; /* angle in degrees, radians */
register int yoff; /* y-offset to working buffer */

/* initialize working buffer offset and set display buffer */
yoff = 0;
t_set view (0, yoff);

/* initialize angle */
deg = 0;

while (1) {

/* toggle buffer offset between 0 and 1024 */
yoff “~= 0x400;

/* wait for vertical interval, so that t_set view will
take effect, and erase new working buffer */
while (cc(CC_VERT)) :;
while (!'cc(CC_VERT));
t_erase (0, yoff, 512, 512, BLACK);

/* increment angle and convert to radians */

deg = deg + INC;

radians = deg * DEG2RAD;

/* calculate x and y coordinates (add y offset to y coordinate) */

x = (int) (RADIUS * t_cos(radians)) + XYCENTER;
y = (int) (RADIUS * t_sin(radians)) + XYCENTER + yoff;
sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 3 — TAAC-1 Programming 3-39

}

/* draw 100x100 rectangle */
t_rect (x, y, 100, 100, CYAN);

/* display buffer we have just written to */
t_set_view (0, yoff):;

Channel-Buffering

Items to Note in
dbchan.tc

The next example, dbchan . abs, draws pseudocolor rectangles in
channels 0 and 1 (the “‘red’’ and ‘‘green’’ channels). While it is
displaying out of the red channel, it draws in the green channel, and
vice versa. The basic algorithm for channel buffering is:

call t_channel_select () to select the channel to be displayed
while (...)

set the bitmask to write to the work channel

set the wordmask to erase only the work channel

wait for beginning of vertical interval

erase the work channel

draw into the work channel

call t_channel_select () to display the work channel

toggle the channel-select variable

#define CYAN 0x101

Defines the rectangle shade for both the red and green channels. The
bitmask determines which bitplanes are written to each time.
t_set_bitmask mode (TA_ON);

Turns on bitmask mode. If bitmask mode is OFF (the default), the
bitmask is ignored.

t_set_channel select (chan_select):

Enables one or more video channels. In this example, chan_select ()
is toggled to enable either the red or green video channel.

sun Revision A of 15 September 1988

microsystems

3-40 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

amsav = input (RD_AM) & ~TA AMWM MASK | TA AMWM;
output (WR_AM, amsav | chan_select);

Sets the DRAM Mode Register (AM) for wordmask mode and sets
the word mask for the proper channel, for use by t_erase ().

t_erase(0, 0, 512, 512, BLACK);

t_erase () is a library function used to erase TAAC-1 image memory
using the fast vector ports. Vector port writes ignore the bit mask.
However, when word mask mode is enabled, the wordmask acts as a
channel mask for writes to data/image memory.

Because we are viewing Bank A (y-addresses 0-1023) while we are
erasing it, we must call t_erase during the vertical interval. To ensure
that we are at the start of the vertical interval, we must first wait for
active video and then wait for the start of the vertical interval.
t_set_bitmask (chanmask[chan_select]);

Sets the bitmask to protect the channel being displayed and to enable
writes to the ‘‘working’’ channel. The bitmask applies to random
writes to data/image memory, not to vector port writes.

chan_select “= 0x3;

Toggles the display and working channels.

S ll n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 3 — TAAC-1 Programming 3-41

/***‘k******‘k****‘k***********k**‘k‘k*k**/

/* */
/* Copyright (C) 1988, Sun Microsystems x/

/* */
/*****************‘k’k*********‘k**‘k**/
/* */
/%

* Example program: dbchan.tc

*

Draws a double-buffered rectangle at the end of an (imaginary)
100-pixel arm that sweeps around in a circle with a center at
(256, 256) . Double-buffered in the red and green channels.

* X% % %

#include <taacl/builtin.h>
#include <taacl/t_math.h>

/* define pseudocolors for red and green channels */
#define BLACK 0x0
#define CYAN 0x101

#define RED CHAN 0x1 /* red channel */
#define GREEN_CHAN 0x2 /* green channel */
#define DEG2RAD 3.14159/180. /* degrees-to-radians conversion *x/
#define RADIUS 100. /* length from center to upper left
corner of rectangle */
#define XYCENTER 256 /* center coordinates */
#define INC 2. /* increment in degrees */
main{()
{
static int chanmask[] = {0, Oxff, Oxff00}; /* bitmasks for red
and green channels */
char red[2], green[2], blue([2]; /* colormap entries */
register int x,y; /* x and y coordinates */
register float deg, radians; /* angle in degrees, radians */
register int amsav; /* saved AM register */
register int chan select; /* channel-select toggle */

/* set channel select to display red channel */
chan_select = RED_CHAN;
t_set_channel select (chan_select);

/* load red and green colormaps with black and cyan colors */
red[0] = 0;

green[0] = 0;

blue[0] = 0;

red[1l] = 0;
green([l] = Oxff;

blue[l] = O0xff;

t_set_colormap (TA RED, 0, 2, red, green, blue);

S ll Il Revision A of 15 September 1988

microsystems

3.42

Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

t_set_colormap (TA _GREEN, 0, 2, red, green, blue);

/* turn on bitmask mode */
t_set_bitmask mode (TA ON);

/* set AM register for wordmask mode, mask out wordmask */
amsav = input (RD_AM) & ~TA AMWM MASK | TA AMWM;

/* set AM register to write to green channel */
chan_select = GREEN_CHAN;
output (WR_AM, amsav | chan_select);

/* initialize angle */
deg = 0;

while (1) {
/* set bitmask to write to work buffer */
t_set_ bitmask (chanmask([chan select]):

/* erase work buffer (non-displayed channel) during
vertical interval. */

while (cc(CC_VERT)) ;

while ('cc(CC_VERT)):;

t_erase (0, 0, 512, 512, BLACK);

/* increment angle and calculate x and y coordinates */
deg = deg + INC;

radians = deg * DEG2RAD;

x = (int) (RADIUS * t_cos(radians)) + XYCENTER;

y = (int) (RADIUS * t_sin(radians)) + XYCENTER;

/* draw 100x100 rectangle */
t_rect (x, y, 100, 100, CYaN);

/* display channel we have just written to */
t_set channel_select (chan_select);

/* toggle channel-select and set AM register to write to
new work buffer */ ’

chan select “= 0x3;

output (WR_AM, amsav | chan select);

S un Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 3 — TAAC-1 Programming 3-43

3.10. Example Program:

Overlay Mode

Items to Note in
overlay.tc

overlay.abs draws a square in the overlay channel of image memory.
One or more bitplanes in the alpha channel can be used for overlay on
the TAAC-1. If a bit is set in the overlay channel, after being logically
ANDed with the overlay mask, the pixel at that location is displayed
using the channel 3 colormaps instead of the video from channels 0-2.

This program does not change the Brooktree RAMDAC overlay colors,
which must be loaded with black. This is the default state after calling
the host initialization routine ta_init () or the tainit utility.

t_set_channel select (RGBA);

Displays all four channels. This selection allows a full-color image in
the red, green, and blue channels and a pseudocolor image in the alpha
channel. Other combinations are possible, including channel-buffering
between pseudocolor images in the red and green channel while using
the alpha channel for overlay.

t_set_bitmask mode (TA ON):
t_set_bitmask (ALPHAMASK);

Turns on bitmask mode and set the bitmask for the alpha channel.

t_set_overlay mode (TA ON);

Turns on overlay mode.

t_set_ overlay mask (0xff);

Sets the overlay mask. This mask is logically ANDed with the alpha
channel value. If the result of the AND is non-zero, the channel 3
(alpha) video is displayed instead of the video from channels 0-2. The
host initialization routine ta_init () turns on all overlay mask bits as a
default, but t_set_overlay mask() can be used to disable bitplanes
from the overlay operation.

S ll n Revision A of 15 September 1988

microsystems

3-44 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

t_set_read mask (TA ALPHA, Oxff);

Sets the alpha channel readmask. The alpha channel value is logically
ANDed with the readmask before being applied as an index to the
colormap.

S u Il Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 3 — TAAC-1 Programming 3-45

/*******‘k**/

/* */
/* Copyright (C) 1988, Sun Microsystems */

/* */
/**’k***********************/
/* */
* Example program: overlay.tc

*

* Draw a square in the alpha (overlay) channel

*

*/

#include <taacl/builtin.h>

#define RGBA 0xf /* all-channels select*/

#define ALPHA 0x8
#define ALPHAMASK 0xff000000
#define RED 0x1000000

main ()

{

static char red[] = {0, Oxff};

static char green[] = {0, 0};
static char blue(] = {0, 0};

/*
/*
/ *

alpha channel select */
bitmask for alpha channel */
pseudocolor shade for alpha chan */

/* load pseudocolors into colormap for alpha channel */

t_set_colormap(TA ALPHA, 0, 2,

/* clear entire screen */
while (cc(CC_VERT));
while (!'cc(CC_VERT));

t_erase

/* display all four channels */

(0,0,512,512,0);

t_set_channel_select (RGBA);

red, green, blue);

/* turn on bitmask mode and set bitmask for alpha channel */
t_set_bitmask mode (TA ON);
t_set_bitmask (ALPHAMASK)

/* turn on overlay mode */
t_set_overlay mode (TA ON);

/* set the overlay mask */
t_set_overlay mask (O0xff);

/* set the alpha channel readmask */
t_set_read mask (TA_ALPHA, Oxff);

/* draw square */

t_line
t_line
t_line
t_line

(100,100,200,100,RED) ;
(200,100,200,200,RED) ;
(200,200,100,200,RED) ;
(100,200,100,100,RED) ;

sun

microsystems

Revision A of 15 September 1988

3-46 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

3.11. Example Program:
Blink Mode

Items to Note in
blink.tc

blink.abs draws a blinking cross in the alpha (overlay) channel. Only the
alpha channel can be blinked.

The blink mask controls which bits of the alpha channel are blinked. If
a bit in the blinkmask is a ‘‘1”’ and the corresponding bit in the alpha
channel is a ‘‘1,”’ then that bit is blinked between 0 and 1. For
example, if the blinkmask contained 0xf, then an alpha channel value of
0x18 would alternate between 0x10 and 0x18 as it indexed the alpha
channel colormap.

If the alpha channel is being used as an overlay, the overlay will blink
between two alpha channel colors (not between the overlay color and
the underlying channel 0-2 colors).

The Brooktree RAMDAC command register controls the blink rate.

val = t_get btcommand (TA ALPHA);
t_set_btcommand (TA ALPHA, (val & ~TA BLINK MSK) |
TA BLINK FAST):;

t_get_btcommand returns the current RAMDAC command register state.
t_set_btcommand is used to set the blink rate to fast. The host
initialization routine ta_init disables blinking but sets the default
blink rate to TA_BLINK_oCCULT (75% on, 25% off).

t_set_blink mask(TA ALPHA, 0x2);

Enables blinking in the alpha channel by setting the blink mask. Only
the bitplanes with a corresponding ‘‘1”’ in the mask will be blinked.

S ll n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 3 — TAAC-1 Programming 3-47

/***7\'******/
/* */
/* Copyright (C) 1988, Sun Microsystems */

/* */
/****************'k’k********'k***‘k*‘k‘k‘k*************************************/
/% x/
/*

* Example program: blink.tc

*

* Draw a blinking cross in the alpha (overlay) channel.
*
*/
#include <taacl/builtin.h>
#define RGBA 0xf /* all-channels select*/
#define ALPHA 0x8 /* alpha channel select */
#define ALPHAMASK 0xff000000 /* bitmask for alpha channel */
int shade, wval;
main ()
{
static char red([] = {0, Oxff, 0, O};
static char green[] = {0, 0, O0xff, 0};
static char bluel[] = {0, 0, 0, Oxff};

shade = 0x3000000; /* pseudocolor for alpha channel */

/* load pseudocolors into colormap for alpha channel */
t _set colormap (TA ALPHA, 0, 4, red, green, blue);

/* display all four channels */
t_set_channel select (RGBA):

/* turn on bitmask mode and set bitmask for alpha channel */
t_set_bitmask mode (TA ON);
t_set bitmask (ALPHAMASK)

/* turn on overlay mode */
t_set_overlay mode (TA_ON);

/* set the blink rate */
val = t_get_btcommand (TA ALPHA);
t_set_btcommand (TA_ALPHA, (val & ~TA BLINK MSK) | TA BLINK FAST);

/* set the blink mask to blink bit 1 of alpha (overlay) channel */
t_set blink mask (TA ALPHA, 0x2);

/* draw element to be blinked; color will alternate between
red and blue */

t_line (175, 200, 225, 200, shade):

t_line (200, 175, 200, 225, shade);

sun Revision A of 15 September 1988

microsystems

3-48 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

3.12. Example Program:
TAAC-1 Graphics
Library

Items to Note in poly.c

This section contains an extended example of a program that calls
TAAC-1 graphics library functions to draw polygons. poly runs on the
host. Its functions are:

* initialize TAAC-1

+ ask user for input (data filename, type of polygon (wireframe or
shaded)and viewing distance)

+ read file containing polygon data

+ write data to TAAC-1 memory

* load and run the TAAC-1 program

drawpoly.tc runs on the TAAC-1, drawing one or more wireframe or
shaded polygons, depending on user input. Its functions are:

+ read input data from the host

 initialize the state table used by the graphics routines

» set up the transformation matrix and projection elements

» transform all vertices

» for shaded polygons, transform all normals and shade vertices

» for each polygon, clip and project vertices and render polygon
drawpoly.tc draws pseudocolor polygons which are double buffered in

the red and green channels. The polygons rotate according to
increments that are fixed in the program.

poly.c is the main host source file.

printf ("Enter input filename\n");
Asks for the name of a text file containing polygon data in this format:

number of polygons
for each polygon:

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 3 — TAAC-1 Programming 3-49

Items to Note in
drawpoly.tc

number of vertices
for each vertex:
X, Y, Z, xnormal, ynormal, znormal

The vertex coordinates and normals are floating-point values; the
normals must be already normalized. To make this example as
straightforward as possible, the list contains no shared vertices; each
polygon’s vertices and normals are defined separately.

The example text file, cube.dat, describes a cube with coordinates
between -0.25 and +0.25. The example program can handle a
maximum of 25 polygons and a maximum of 100 vertices total, but this
is an arbitrary restriction, not one imposed by the graphics library.

stat = ta_set_channel select (tahndl, ON, OFF, OFF, OFF);
This routine sets the video output to pseudocolor from channel 0.

There are four RAMDACS, corresponding to the four video channels,
each with its own red, green, and blue colormaps. The red outputs from
all four RAMDAC:s are wired together, as are the green and blue
outputs. If you are loading the colormaps for pseudocolor operation, it
is a good idea to set the channel select first, to avoid overdriving the
monitor. For example, if the colormaps for all four RAMDACS were
loaded and indexed to simultaneously drive full intensity (255) out on
the red channel, the monitor could be damaged.

pseudomap (tahndl);
This example subroutine initializes the colormaps for channel 0 (the
‘“‘red’’ channel) and channel 1 (the ‘‘green’’ channel) with four

pseudocolor ramps. Each ramp has 64 shades. It is not part of the
host library.

stat = ta_runm (tahndl);

Loads the TAAC-1 program that was linked into the host program and
begins TAAC-1 execution.

drawpoly.tc is the main TAAC-1 source file.

sun Revision A of 15 September 1988

microsystems

3-50 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

#include <taacl/t_graphics.h>

Include file used by graphics library routines. This file contains function
prototypes and includes the file ta_graphics.h, containing structure
definitions.

t_scaledx4(), t_translatedx4(), t_rotatedx4(), t_rotate3x3()

These routines generate transformation matrices for scaling,
translation, and rotation. In this example, the z coordinates are scaled
by 1/2 and translated so that the z values will be within the clipping
boundaries of (0, w). Seet fastpcliph() and t_pcliph ().

t matdmul(), t_mat3mul()

t_mat4mul () is a library routine used to concatenate two 4 x 4
matrices. t_mat3mul () concatenates two 3 x 3 matrices.

t_xformh (vmatrix, vertices, xfm vertices, tot_vert);
t_xformnh (nmatrix, normals, xfm normals, tot_vert);

t_xformh () transforms the vertex list of homogeneous [x y z w]
coordinates by a 4 x 4 matrix. t_xformnh () transforms the normal list
of non-homogeneous [x y z] coordinates by a 3 x 3 matrix. The final
vertex transformation matrix contains the reciprocal of the view
distance in matrix element [2][3], for perspective projection. The
routine t_proj() will complete the perspective projection by dividing by
the transformed w coordinate.

t_pseudo (state, (float *)xfm normals, colors, tot vert);

t_pseudo () calculates the pseudocolor value at each vertex, using as
input the polygon color from the state table and the transformed normal
list. In this example the entire vertex list can be shaded in a single

call, since all the polygons are the same color. t_pseudo () produces a
color list consisting of a single color per vertex. For full-color shading,
call t_fastshade(), which produces a color list consisting of three colors
(red, green, blue) per vertex. The color values range between 0.0 and
255.0.

S ll n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 3 — TAAC-1 Programming 3-51

t_fastpcliph () and t_pcliph ()

t_fastpcliph () clips the vertex list for a single-contour polygon; it
does not clip colors; t_pcliph() handles multiple-contour polygons
and clips colors. The vertices are clipped so that:

-w<=Xx<=w
W<=y<=w
0 <=z<=w

There are also non-homogeneous versions of these clippers,
t_fastpclipnh() and t_pclipnh(), and an orthographic clipper
(t_porthoclip ()) that clips against arbitrary boundaries. See the
graphics library section of the TAAC-1 library chapter for details.

t_proj (state, (float *)clipped vertices], (int*)proj_out,
num_vert out, VTX SIZE);

t_proj() projects the vertices for a single polygon, using the scale and
translate factors set in the projection structure. In this example,
t_proj scales the transformed x and y coordinates by 255.0 and
translates them by +256.0, to place them in screen space. It scales z

by 32767.0, to take full advantage of the z-buffer depth (for shaded

polygons).

If the input coordinates are homogeneous [x y z w] and view dist in
the projection structure is non-zero, t_proj () divides x, y, and z by w
(before translation) to complete the perspective projection.

t_proj () produces a list of projected (screen) coordinates in the
format expected by the polygon routines: the lower 16 bits of each
coordinate contains the fractional part; the upper 16 bits, a signed
integer. This format ensures sub-pixel accuracy.

t_wfpoly (state, NUM CONTOURS, &num vert out,
(int *)proj_out, 0, 0);

t_fastpoly (state, num vert out, (int *)proj_out,
colors out);

S un Revision A of 15 September 1988

microsystems

3-52 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

t_wfpoly () renders a wireframe polygon; t fastpoly(), a flat- or
Gouraud-shaded polygon. In this program each polygon has a single
contour.

S ll n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 3 — TAAC-1 Programming 3-53
/‘k***************‘k***/
/* */
/* Copyright (C) 1988, Sun Microsystems */
/* */
/**/
/* */
/*
* Example program: poly.c
*
* Opens TAAC-1, loads and runs TAAC-1 program, prompts for
* user input, andsends data to TAAC-1 memory
*
*/
#include <taacl/taio.h>
#include <stdio.h>
#include <taacl/ta_graphics.h>
#include "drawpoly map.h"
#define TAAC_READY 2 /* TAAC-1 ready for input */
#define GO 1 /* host tells TAAC-1 to proceed */
#define MAX VERTS 100 /* maximum total vertices */
#define MAX POLYS 25 /* maximum polygons */
TA_HANDLE *tahndl; /* Handle returned from ta_ open */
int num _poly; /* number of polygons */
struct t_coord4 vertices[MAX VERTS]; /* input vertex list */
struct t_coord3 normals[MAX VERTS]; /* input normal list */
int vtxcount [MAX POLYS]; /* number of vertices per polygon */
main ()
{
FILE *inptr; /* input file pointer */
char infil([80]; /* input filename */
int ioflag; /* flag value */
int command(3]; /* command words:

word 0: polygon type: TA_WIREFRAME
or TA_GOURAUD

word 1: total number of vertices

word 2: total number of polygons */

float viewdist; /* 0 => orthographic, non-zero =>
perspective view */

int tot_vert; /* total number of vertices */

int type:; /* 0 => shaded, 1=> wireframe */

int stat; /* returned status */

int i, 3;

float *pv, *pn; /* ptr to vertex and normal arrays

TA_HANDLE *taacstartup {(); /* initialization routine */

/* open, initialize, load, run TAAC-1 */
tahndl = taacstartup ();

/* select channel 0 and load pseudocolor table in red and green channels *

.

*/

/

sun Revision A of 15 April 1989

microsystems

3-54 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

stat = ta_set_channel_select (tahndl, ON, OFF, OFF, OFF);
pseudomap (tahndl) ;

/* read in vertex list */

printf ("Enter input filename\n");

scanf ("%$s", infil);

if ((inptr = fopen(infil, "r"™)) == 0)
printf ("error opening input file\n"):;

/* read number of polygons */
fscanf (inptr, "%d", &num poly);

/* for each polygon, read number of vertices, vertex X,¥,2, normals

X, ¥,z */
tot_vert = 0; /* total vertices */
pv = (float *)vertices;
pn = (float *)normals;

for (i=0; i<num _poly; i++) {
fscanf (inptr, "%d4", &vtxcount[i]);
for (j=0; j<vtxcount[i]; j++) {
fscanf (inptr, "%f %f %£f", pv, pv+l, pv+2);

pv += 3;

pv++ = 1.; / w =1, %/
fscanf (inptr, "%f %f %f", pn, pn+l, pn+2);

pn += 3;

tot_vert++;

}

/* get type of polygon, wireframe or shaded */

printf ("Enter 0 for shaded polygon, 1 for wireframe >");

scanf ("%d", &type):

/* get viewing distance (0 = orthographic) */

printf ("Enter viewing distance between 0 and 2. (0 for orthographic) >");
scanf ("$£f", &viewdist);

/* set up command words */
command[0] = type:;
command([l] = tot_vert;
command [2] num poly;

/* wait for TAAC-1 ready */

ioflag = 1;

while (ioflag != TAAC_READY) {

if((stat= ta_read(tahndl,&ioflag,sizeof (ioflag),TC_ioflag))!=
sizeof (ioflagq))
read_error(stat):;
}
/* send vertex list, normal list, and vertex count list
to TAAC-1 memory */

if ((stat= ta_write(tahndl,vertices,sizeof(vertices),TC_vertices))!=

sizeof (vertices))

sSsun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide Chapter 3 — TAAC-1 Programming 3-35
write_error(stat);
if ((stat= ta_write(tahndl,normals, sizeof (normals),TC_normals)) !=
sizeof (normals))
write error(stat);
if ((stat= ta_write(tahndl, vtxcount, sizeof (vtxcount), TC_vtxcount)) !=
sizeof (vtxcount))
write error(stat);
/* send command words to TAAC-1 and set handshaking flag */
if ((stat= ta_write(tahndl, command, sizeof (command), TC_command)) !=
sizeof (command))
write error(stat):;
if ((stat= ta_write(tahndl, &viewdist,sizeof (viewdist),TC viewdist))!=
sizeof (viewdist))
write error(stat);
ioflag = GO;
if ((stat= ta_write(tahndl, &ioflag,sizeof (ioflag),TC ioflag)) !=
sizeof (ioflagqg))
write_error(stat);
/* close TAAC-1 link (TAAC-1 program will continue to run) */
ta_close(tahndl);
}
/******** taacstartup ********/
/* open TAAC-1 and begin program execution */
TA _HANDLE *taacstartup ()
{
TA HANDLE *tahndl; /* handle returned from ta open() */
int tastatus; /* returned status */
/* open TAAC-1 link */
if ((tahndl = ta_open (0)) == NULL) {
fprintf (stderr, "Error opening TAAC-1\n");
exit (-1);
}
if ((tastatus = ta_init (tahndl)) != TA SUCCESS) {
fprintf (stderr, "ta init failed, returned %d\n", tastatus);
exit (-1);
}
if ((tastatus = ta_set_display (tahndl, TA ON)) != TA SUCCESS) {
fprintf (stderr, "ta_set_display failed, returned %d\n", tastatus);
exit (-1);
}
if ((tastatus = ta_runm (tahndl)) != TA_SUCCESS) {
sun Revision A of 15 September 1988

microsystems

3-56 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

fprintf (stderr, "ta runm failed, returned %d\n", tastatus);
exit (-1);

}

return (tahndl);

/**‘k***** write_error ********/

write error (status)

int status;

{
fprintf (stderr,"ta write failed, returned %d\n",status);
exit (-1);

/******** read error ********/

read_error (status)

int status;

{
fprintf (stderr,"ta read failed, returned %d\n",status);
exit (-1);

S un Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 3 — TAAC-1 Programming 3-57

/‘k**************************‘k*******k*******************************‘k****/
/* x/
/* Copyright (C) 1988, Sun Microsystems *x/

/* */
/**/
/* *x/
/*

* Example program: drawpoly.tc

*

* Draws shaded, z-buffered polygons or wireframe polygons
*

*/

#include <taacl/builtin.h>
#include <taacl/t_graphics.h>
#include <taacl/t_math.h>
#define ON 1

#define READY 2 /* TAAC-1 ready for host input */
#define DONE 0 /* TAAC-1 has finished */

#define MAX VERTS 100 /* maximum total vertices */
#define MAX POLYS 25 /* maximum total polygons */
#define MAX VERTS_PER POLY 12 /* maximum 12 vertices per polygon */
#define NUM CONTOURS 1 /* single-contour polygons */
#define VTX SIZE 4 /* homogeneous vertex coords */
#define ZSCALE 0.5 /* scale z by 1/2 */

#define ZTRANS 0.25 /* translate z */

#define SIZXY 512 /* x and y screen size */

#define RED CHAN 0x1 /* red channel select */

#define GREEN_CHAN 0x2 /* green channel select */
#define ZBUFF_CHAN 0xc /* blue and alpha channel select

(hardware z-buffer) */

#define BLACK O0xffff0000 /* black (lower 16 bits), z-buffer
background (upper 16 bits) */

#define RED 63 /* pseudocolor for cube */

/* Declare global data structures. The host program reads user input

and writes to these items. */

int ioflag; /* host/TAAC handshaking flag */

int command[3]; /* command words:
word 0: polygon type: TA WIREFRAME

or TA_GOURAUD

word 1: total number of vertices
word 2: total number of polygons

*/
float viewdist; /* perspective viewing distance */
struct t_coord4 vertices[MAX VERTS]; /* vertex list */
struct t_coord3 normals[MAX VERTS]; /* normal list */
int vtxcount [MAX POLYS]; /* contains number of vertices

in each polygon */

main ()

S un Revision A of 15 September 1988

microsystems

3-58 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

register int num poly; /* number of polygons */

register int tot_vert; /* total number of vertices */
register int type:; /* shaded or wireframe */

struct t state_ tbl table, *state:; /* state table, ptr to table */
float trans_matrix(16]; /* translation matrix */

float scale matrix[16]; /* scale matrix */

float proj matrix[16]; /* projection matrix */

float vmatrix[16]; /* vertex transformation matrix */
struct t proj info projection; /* projection factors */

struct t_light source light; /* light source */

struct t_light model model; /* lighting model */

void wireframe poly () /* routine for wireframe polygons */
void shaded poly(): /* routine for shaded polygons */

/* wait for host to set handshaking flag */
ioflag = READY;
while (ioflag==READY) ;

/* read command word values into registers */
type = command([0];

tot_vert = command[1l];

num _poly = command[2];

/* turn on bitmask mode */
t set bitmask mode (TA ON);

/* initialize state table */

state = &table; /* pointer to state table */
state->color = RED; /* polygon color */

state->proj = &projection; /* pointer to project data */
state->fbzb mode = TA PCZB16; /* hardware z-buffer, pseudocolor */

/* set scale and translation factors for projection */
projection.sx = 255.;

projection.sy 255.;

projection.sz = 32767.;

projection.tx = 256.;

projection.ty 256.;

projection.tz 0.;

/* generate matrix to scale and translate z */
t scale4x4 (1.0, 1.0, ZSCALE, scale matrix);

t translate4x4 (0.0, 0.0, ZTRANS, trans_matrix);
t matdmul (scale matrix, trans matrix, vmatrix);

/* if this is a perspective projection (viewdist is not zero),

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 3 — TAAC-1 Programming 3-59

generate an identity matrix, set the [2][3] element to 1l/viewdist
and concatenate it with the base matrix. */
state->proj->view _distance = viewdist;

if (viewdist != 0.0) {
t_scaled4x4 (1.0, 1.0, 1.0, proj matrix);
proj_matrix([1l] = t_recp(viewdist):;

t_matd4mul (vmatrix, proj matrix, vmatrix);
/* set polygon type */
state->shade_type = type:; /* shaded or wireframe */

/* call routine based on polygon type */
switch (type) {

case TA WIREFRAME: /* wireframe polygons */
state->line type = TA PLAIN; /* jagged lines */
wireframe poly (state, num poly, tot vert, vtxcount, vertices,
vmatrix) ;
break;
case TA GOURAUD:
state->clip colors = TRUE; /* clip polygon colors */
state~>ramp size = 64; /* size of colormap ramp */
state->backface_sense = TA DEFLT; /* front and backfaces
shaded normally */
state->diffuse_coeff = 0.99; /* diffuse lighting coeff. */
state->lighting = &model; /* ptr to lighting model */
model.ambient weight = 0.01; /* ambient light weight */
model.lights = &light; /* ptr to light src */
light.direction.x = 0.; /* light src direction */
light.direction.y = 0.;
light.direction.z = -1.0;

shaded poly (state, num poly, tot vert, vtxcount, vertices,
normals, vmatrix);
break;

/KK ok koK ok wireframe poly *k Kk ok xk /

void wireframe poly (state, num poly, tot_vert, vtxcount, vertices,

vmatrix)

struct t_state_tbl *state; /* ptr to state table */
register int num poly; /* number of polygons */
register int tot_vert; /* total vertices */

int vtxcount]; /* array of vertex counts */
struct t_coord4 vertices(]; /* vertex list */

float vmatrix([]; /* vertex transformation

matrix */

S ll n Revision A of 15 September 1988

microsystems

3-60

Chapter 3 — TAAC-1 Programming

TAAC-1 User Guide

struct t_coord4 xfm vertices[MAX VERTS];
/*

transformed vertex list */

struct t_coord4 clipped_vertices[MAX_ VERTS_PER_POLY * 2];

/%
int num vert out; /*

int proj out [MAX VERTS PER POLY * 2][3];

clipped polygon vertex list -
twice size of input list */
number of vertices output

by clipper */

/* polygon output from t proj */
float rotmatrix[16]; /* 4x4 rotation matrix */
static float axis[3] = {1.0, 0.0, 1.0};

/* axis for rotation */
register int chan select; /* channel-select toggle*/
register int ndx; /* index to vertex list */
register float angle; /* rotation angle */
static int chanmask[] = {0, OxffffO0ff, Oxffff£f00};

/* masks for red and green channels*/
register int amsav; /* saved AM register value */
register int i; /* loop counter */

/* set rotation angle and compute rotation matrix */

angle = 0.01;
t rotated4x4 (axis, angle, rotmatrix);

/* read AM register and set amsav to enable wordmask mode and
the z-buffer (blue and alpha channel) wordmask. This value

will be used later. */

amsav = input (RD_AM) & ~TA AMWM MASK | TA AMWM | ZBUFF_ CHAN;

/* set channel select to display channel 0 */

chan_select = RED_CHAN;
t_set channel select (chan select):

while (1) {

/* toggle channel-select and set the wordmask to write
to the work buffer (non-displayed channel) as well

as the z-buffer */
chan_select "= 0x3;
output (WR_AM, amsav | chan select);

/* erase work buffer during vertical interval. t_erase uses
the vector ports to erase the screen. If word mask mode
is ON, the four-bit word mask in the AM register
determines which channels are erased. A "1" in a channel
position means that channel will be erased. */

while (cc(CC_VERT));
while (!cc(CC_VERT));
t_erase (0, 0, SIZXY, SIZXY, BLACK);

/* set bitmask to write to work buffer */

t_set bitmask (chanmask([chan_select]);

sun

microsystems

Revision A of 15 September 1988

TAAC-1 User Guide Chapter 3 — TAAC-1 Programming 3-61

/* premultiply vertex transformation matrix by rotation matrix */
t matd4mul (rotmatrix, vmatrix, vmatrix):;

/* transform vertices */
t_xformh (vmatrix, vertices, xfm vertices, tot vert);

/* clip, project and render each polygon */
ndx = 0; /* start of vertex list */
for (i=0; i<num poly; i++) {

/* clip polygon vertices */
t_fastpcliph (vtxcount[i], xfm vertices+ndx, &num vert out,
clipped vertices);

/* project clipped vertices */

t_proj (state, (float *)clipped vertices, (int *)proj_ out,
num_vert_out, VTX_ SIZE);

/* call polygon routine */

t_wfpoly (state, NUM_CONTOURS, &num vert out, (int *)proj_out,
Ol 0);

ndx += vtxcount{i];

/* display channel we have just drawn in */
t_set_channel select (chan select);

[XKk Kok k% shaded poly *ok ok kk Kk /

void shaded_poly (state, num poly, tot_vert, vtxcount, vertices,
normals, vmatrix)

struct t_state tbl *state; /* ptr to state table */
register int num poly; /* number of polygons */
register int tot vert; /* total vertices */

int vtxcount][]; /* array of vertex counts */
struct t_coord4 vertices([]; /* vertex list */

struct t_coord3 normals|[]; /* normals list */

float vmatrix[]; /* vertex transform. matrix */

{
struct t_coord4 xfm vertices[MAX VERTS];
/* transformed vertex list */
struct t_coord4 clipped vertices[MAX VERTS_PER POLY * 2];
/* clipped polygon vertex list -
twice size of input list */
int num vert_out; /* number of vertices output

S u n Revision A of 15 September 1988

microsystems

3-62 Chapter 3 — TAAC-1 Programming TAAC-1 User Guide

by clipper */
int proj out [MAX VERTS PER POLY * 2][3];
/* polygon output from t_proj */

float rotmatrix([16]; /* 4x4 rotation matrix for vertices*/
float nrotmatrix[9]; /* 3x3 rotation matrix for normals */
float nmatrix[9]; /* normal transformation matrix */
static float axis[3] = {1.0, 0.0, 1.0};

/* axis for rotation */
struct t_ coord3 xfm normals[MAX VERTS];
/* transformed normal list */
float colors[MAX VERTS]; /* color list generated by shader
for entire vertex list
(one color per vertex) */
float colors_ out [MAX VERTS_PER POLY * 2};
/* clipped color list for
single polygon */

register int chan select; /* channel-select toggle*/
register int ndx; /* index to vertex list */
register float angle; /* rotation angle */
static int chanmask([] = {0, Oxffff00ff, Oxffffff00};

/* masks for red and green channels */
register int amsav; /* saved AM register value */
register int i; /* loop counter */

/* set up initial (identity) matrix for normal transformations */
t scale3x3 (1.0, 1.0, 1.0, nmatrix);

/* set rotation angle and compute rotation matrices
for vertices and normals */

angle = 0.03;

t rotate4x4 (axis, angle, rotmatrix);

t_rotate3x3 (axis, angle, nrotmatrix);

/* read AM register and set amsav to enable wordmask mode and
the z-buffer (blue and alpha channel) wordmask. This value
will be used later. */

amsav = input (RD_AM) & ~TA_AMWM MASK | TA AMWM | ZBUFF_CHAN;

/* set channel select to display red channel */
chan_select = RED_CHAN;
t _set_channel select (chan_select);

while (1) {

/* toggle channel-select and set the wordmask to write
to the work buffer (non-displayed channel) as well
as the z-buffer */

chan_select "= 0x3;
output (WR_AM, amsav | chan_select):

/* erase work buffer during vertical interval. t_erase uses

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 3 — TAAC-1 Programming 3-63

the vector ports to erase the screen. If word mask mode
is ON, the four-bit word mask in the AM register
determines which channels are erased. A "1" in a channel
position means that channel will be erased. */

while (cc(CC_VERT));

while (!cc(CC_VERT));

t _erase (0, 0, SIZXY, SIzXY, Oxffffbfbf);

/* set bitmask to write to work buffer */
t_set_bitmask (chanmask[chan_ select]);

/* premultiply vertex matrix by rotation matrix */
t_mat4mul (rotmatrix, vmatrix, vmatrix);

/* premultiply normal matrix by normal rotation matrix */
t_mat3mul (nrotmatrix, nmatrix, nmatrix);

/* transform vertices */
t_xformh (vmatrix, vertices, xfm vertices, tot_vert);

/* transform normals */
t_xformnh (nmatrix, normals, xfm normals, tot vert);

/* shade all vertices, using color in state table */
t_pseudo (state, (float *)xfm normals, colors, tot_vert);

/* clip, project and render each polygon */
ndx = 0; /* start of vertex list */
for (i=0; i<num poly; i++) {

/* clip vertices for this polygon */

t_pcliph (state, NUM CONTOURS, &vtxcount[i], xfm vertices+ndx,
%xfm normals+ndx, colors+ndx, &num_vert_out,
clipped vertices, 0, colors_out):;

/* project clipped vertices */
t_proj (state, (float *)clipped vertices, (int *)proj out,
num vert_out, VTX SIZE);

/* call shaded polygon routine */
t_fastpoly (state, num_vert_out, (int *)proj_out, colors_out);

/* increment index to point to vertices for next polygon */
ndx += vtxcount[i];

/* display channel we have just drawn in */
t_set_channel_select (chan_select);

1

sun Revision A of 15 September 1988

microsystems

Chapter 4

4.1.

4.2.
4.3.

4.4.

4.5.

4.6.
4.7.

The C Compiler (tacc)

The C Compiler (tace).coveveeernennnee..

Introduction................

TAAC-1 EXENSIONS ..etiiveeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeee e eeeens

Other Considerationsccceeeeuveeeeeeeen...

ssessccsnns

P P Y TR

tacc Command Syntax.......................

Programming Preliminaries............c..cccccovvvuennnen..

INAMIES ...ttt v
CONSLANLES......cveveiterieieeeteeeieee ettt
EXPIESSIONS ...ttt e
Operator Hierarchyccccooeeiveiiiieieciicccceeen.
Expressions Involving Structuresc.ccoeoeveeeeevennnn.
Single and Double Precision.............c.ccveeeveveeveeeeeennn,
Error Detection........c.ccuvueceoeniveniercriieeeeeeee e
Variables ...t
DRAM Variables ..o e
Data TYDPES ..ocveuiiririeiieee ettt
Optimizing Data Structure Definitions...........ceueve......
Machine-Dependent Extensionscccoccovevevenenesn.
INitialiZationcccocevenieininieniee e
Function Definitionsccccoueveeieciininieeiicce e
fast FUnCHONS.......ccocoiviiiiniiiicceee e,
The stack_pc Storage Class Modifier...........................

Function Prototypes..

PR R T N R R T T TR TR TR,

4-10
4-10
4-10
4-10
4-11
4-11
4-12
4-13
4-13
4-15
4-15
4-15
4-16

£
ilblien)
liiliifie

isyty
Y L ol R g g
Bl

v

4.8.
4.9.
4.10.
4.11.

4.12.

4.13.

4.14.

4.15.
4.16.

Converting from Float to Double........c.cccecceveriiinninnnne 4-18

Declaring Global RegIStersc.ccovveiviiinireicienreiieeniiennens 4-18
Function Calls and Argument Sizeccccoeeeiviiiinnannn. 4-19
STAEMENLS c...eevveiniiiieeiiccie ettt r e sabesreesae e 4-19
Special Coding Techniques.......ccoceerviiinieriienceinniinnnieeennns 4-21
Switching Between Standard C and TAAC-1 C............. 4-22
Run-Time NOtES.......coccieiiiiiiriiecie et 4-22
Function Calls.......ccoooniiiiiiiiiiiie et 4-23
RegiSter USAZE ..uveemieiiiiieciiiniieeee et eeeeteereesiesenens 4-23
Non-Register Variables.......cc.coccoeviiiiniiniinnincnneeneennn. 4-23
C Stack FOrmatccooeciiiininiiiienicceeiccte e 4-24
C Stack OVETTIOW.....coiiiiiniiiiiiiiinie ettt 4-25
The Function atof () ..o e seenees 4-25
In-Line Assembler Code.........cccouvinirenienieninieneninecnn 4-25
In-Line Code Hintscccocivimmienienienienieeeeeiesreeeeann 4-26
Built-In Functions........cccccocceviniininninnienieneesieniieceennen 4-27
Built-In Function Summaries.........cccceevenvieninieniienennnenne. 4-28
Example Using Built-in Functionsc..ccccceeceeieeinnnenn. 4-31
The Include File builtin.h .o, 4-33
The Include File taacdefs.hiiieneiienecciiiienrinnennas 4-35

4.1. Introduction

TAAC-1 Extensions

The C Compiler (tacc)

The TAAC-1 compiler tacc is an ANSI-standard C compiler designed
to take advantage of the TAAC-1 architecture. Where possible, tacc
combines address calculations, memory access, arithmetic operations,
and branch instructions within the TAAC-1’s wide instruction word.

The TAAC-1 C compiler supports certain extensions to standard C for
direct access to TAAC-1 capabilities. These extensions include:

1.

Built-in functions: A set of macros built into the compiler permit
fast access to specialized TAAC-1 functions, such as lookup tables
access and 1D/2D/3D data reads/writes, without the overhead of
subroutine calls.

Global register variables.

Register binding: This extension binds register variables to specific
registers in ALUs RC and RD.

In-line code: The compiler allows you to insert in-line assembly
language within a C program and to access program variables
symbolically from the assembler code. One use of in-line code is to
replace program inner loops for speed enhancement.

Function prototyping: As defined by the proposed ANSI standard,
function prototyping allows function declarations to contain
information about function arguments. Using function prototyping
can prevent floats from being converted to doubles when being
passed as function arguments.

fast functions: Usually, the compiler automatically saves and
restores all registers used within each subroutine. However, eight
registers from each ALU (RC and RD) are allocated for fast
functions. These registers are not saved or restored, minimizing
the overhead of calling these subroutines. In addition, function

sun 4-3 Revision A of 15 September 1988

microsystems

4-4 Chapter 4 — The C Compiler (tacc) TAAC-1 User Guide

Other Considerations

Memory

prototyping allows arguments to fast functions to be passed in
registers, rather than on the stack.

7. loop/switchf statements: These non-standard statements are
additions to the standard C compiler. loop uses the sequencer
counter to control looping, to improve code efficiency. switchf is an
optimized form of the standard switch statement.

While the compiler is a useful tool for programming the TAAC-1,
porting programs from the workstation to the TAAC-1 often involves
more than new compile and link processes. These issues need to be
taken into consideration:

The TAAC-1 is a physical address machine whose non-contiguous
memory address space is composed of functionally different memory
types. Program memory consists of 16K 200-bit words; the TAAC-1
startup and register-dump subroutines occupy approximately 1Kword
of this space.

There are two kinds of data memory - dynamic RAM and scratchpad
RAM. Dynamic RAM (DRAM, or data/image memory) is used for
both image display (the video frame buffer) and data storage. DRAM
can be addressed in 1D, 2D, or 3D modes. The vector ports provide
fast serial DRAM access. There is 8Mbytes or 2M 32-bit words of
contiguous DRAM memory, which equates to 1024 x 2048 x 32 bits in
2D image space.

The talink linker does not automatically allocate any space for DRAM
variables. If you declare any DRAM variables, you must specify a
DRAM address range at link time that does not conflict with your

usage of DRAM memory for image display. See the talink chapter
for further information.

Be aware that all writes to DRAM variables are affected by the current
setting of the DRAM mode register. The mode register

+ enables/disables bitmask mode

* selects the current bitmask id

» enables/disables word mask mode

» specifies the current word mask

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 4 — The C Compiler (tacc) 4-5

* selects 1D/2D/3D mode for AC register reads and writes

 selects random mode, serial read mode, serial write mode, or shift
register load (the last three modes apply to vector port operations).

Therefore, if you have enabled bitmask mode, the current bitmask will
apply to all writes to DRAM variables via the AC or Al register. If you
have enabled word mask mode, the current wordmask will apply. In
general, bitmask mode and wordmask mode should be disabled for
writes to program variables stored in DRAM.

Scratchpad RAM (SRAM) holds the C stack. In addition, it is the
default location for global and static program variables. SRAM size is
much smaller than DRAM - 16K 32-bit words. The C stack grows
from high to low SRAM memory, while global and static variables are
allocated space at the beginning of SRAM. There is no check for
collision of C-stack and program variables.

Data types
All memory is word-addressable, as opposed to byte or halfword
addressability. Consequently, the smallest data size is 32 bits,
including int, short, and char data types.

UNIX Support
The TAAC-1 library includes graphics primitives, image processing
subroutines, mathematical functions, and video control subroutines.
The TAAC-1 does not run UNIX, however, and the library does not
support the full range of functions contained in a standard UNIX
interface. For example, the TAAC-1 does not currently support
memory allocation, string-handling, or I/O functions.

.Error Detection
For efficiency considerations, arithmetic overflow/underflow errors, out-
of-bounds addresses, and stack overflow/underflow, errors go
undetected and produce undefined results.

Deviations from Standard C
The TAAC-1 compiler contains these deviations from standard C:

* Bit fields are not supported.

* Double precision is used to evaluate expressions only if one of the
operands is double.

sun Revision A of 15 April 1989

microsystems

4-6 Chapter 4 — The C Compiler (tacc) TAAC-1 User Guide

4.2. tace Command
Syntax

* Floating point constants are assumed to be of type double unless
the subroutine is compiled using the -fsingle option, or unless the
value is followed by F or £ or the constant is cast as a f1oat, as in
these examples:

#define ABC 100.7F
or.
#define ABC (float)100.7

» External variables may be referenced more than once, using the
extern keyword. External variables may be defined only once, by
specifying them without the extern keyword.

» Scalar global variables are always initialized to zero, unless the
program specifies another initial value. Global arrays and
structures are not initialized unless done so explicitly by the

program.

NOTE: functions returning structures are now supported.

The examples in the TAAC-1 programming chapter and the distribution
demos offer further help in TAAC-1 programming.

tacc [options] filename

-c Use source code as comments in the assembly
code output file.

-p Disable the TAAC-1 C preprocessor before
compilation. Default enables the preprocessor.

-w Suppress warning messages.

-a Do not invoke the assembler.

-1 Tell assembler, if invoked, to generate a listing file.

-fsingle Use single precision to pass arguments or perform

computations involving variables of type f1loat.
Does not affect doubles.

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide Chapter 4 — The C Compiler (tacc) 4-7

-Istring Tell the preprocessor to use the st ring directory to
search for include files.

-Dname Define a constant name containing a value of 1.

~Dname=stuff Define a string constant name containing the string
stuff.

-Uname Tell preprocessor to remove any initial definition of
name.

-id Print out compiler version number.

-peep Disable peephole optimization. Used mainly in
compiler error isolation. Not normally used.

-pack Disable microcode compaction. Not normally used.

-stdstr Do not pack strings.

The compiler generates an assembly code source file, filename.asm.
Unless you have specified the -a option, the compiler automatically
invokes the assembler, which generates an object file, filename.ob3.

tce driver
The TAAC-1 software also includes a driver for the compiler, linker,
and taabs2o, called tcc. tcc syntax resembles standard Unix cc
syntax in many ways. It has the following options:

-DX Define cpp symbol X (for cpp)

-IX Add directory X to cpp include path (for cpp)

-Ux Delete initial defintion of cpp symbol X (for cpp)

-fsingle Use single precision to pass arguments or perform
computations involving variables of type float.
Does not affect doubles.

-peep Do not do peephole optimization

-pack Do not do compaction

-stdstr Standard strings (do not pack strings)

-comment Include source text as comments

~-list Generate listing file

-g Generate symbolic debugging information

sun Revision A of 15 April 1989

microsystems

4-7.1

TAAC-1 User Guide

-d <start> <end> select dynamic ram to use for DRAM variables

-1X Read object library (for taload)

-LX Add directory X to 1d library path (for taload)

-m <file.map> generate map file in file.map

-h <file.h> generate header file in file.h

-n <symbol> supply symbol to taabs20

-o <file{,.0,.abs}> Set name of output file

-c Produce ’.obj’ file. Do not run linker

-v Report which programs the driver invokes

-E Run source thru cpp, output to stdout

=S Produce ’.asm’ file. Do not run tasm

-dryrun Show but do not execute the cmds constructed by
the driver

4he1p print this message

For example, given a TAAC-1 program myprog.tc:
% tcc -o myprog.abs myprog.tc -ltaacl

would invoke cpp (the preprocessor), tacc, and talink to produce the
absolute file myprog.abs.

% tcc -o myprog.o myprog.tc -ltaacl

would invoke cpp, tacc, talink, and taabs2o to produce an object
file myprog.o that could be linked with a host program.

% tcc -o myprog myprog.tc -ltaacl

would invoke cpp, tacc, and talink, and then convert the absolute
file to a Unix executable called myprog, which you could then run by

typing:
% myprog

The first line of myprog would invoke the TAAC-1 utility tasvc, which
would act like tarun in downloading and executing the TAAC-1

sun Revision A of 15 April 1989

microgystems

TAAC-1 User Guide 4-72

program. For a further description of tasvc, refer to Appendix A of this
manual.

4.3. Programming
Preliminaries
The tacc C compiler uses the standard Sun C preprocessor, allowing
the use of all standard preprocessor functions, including #define,
#include, and macros with arguments.

Programs use sets of intermixed variable and function definitions.
TAAC-1 C uses the standard C syntax for declarations, allowing you

to define pointers to arbitrary objects, arrays of arbitrary objects, or
functions returning arbitrary objects. A variable must be defined before
its first use. Global variables must be defined before the first function
definition.

Names

Name length is unspecified, but only the first 32 characters are
significant. Case distinctions are respected. The first character must
be alphabetic or an underscore; the rest of the name can be
alphanumeric or an underscore.

sSsun Revision A of 15 April 1989

microsystems

4-8

Chapter 4 — The C Compiler (tacc) TAAC-1 User Guide

Constants

Constants can be expressed using decimal, octal, hex, character, string,
or floating point notation. Decimal constants are any string of digits.
Octal constants begin with the number 0. Hex constants begin with 0x
and may contain digits and the letters a - £, in upper or lower case.

For example, 0xf£££, 0Xx£000, and 0x001 are all hex constants.
Character constants consist of single characters enclosed in single
quotes. String constants consist of text strings enclosed in unescaped
double qoutes. The compiler always appends a zero byte to the end of
any string constant. The value of a string constant is the address of

the first byte of the string.

Applying the suffix 1 or L to a decimal, octal, or hex constant identifies
the constant as long. U or u indicates an unsigned constant.

The compiler supports these standard C escape sequences:

\a alert (bell) \f form feed

\n newline (line feed) " single quote

\t horizontal tab \" double quotes

\v vertical tab \nnn nnn = 1-3 digit octal number
\b back space \xnnn nnn = 1-3 digit hex

\r carriage return \\ backslash

If a backslash is followed by a newline character, both characters are
thrown away. This allows you to spread a string constant over more
than one line. If a backslash is followed by any other character which is
not in the list above, then the backslash is thrown away. String
constants contain a maximum length of 200 characters.

A floating-point constant consists of an integer part, followed by a
decimal point, followed by a fractional part and/or an exponent part.
Both the integer and fractional part consist of a string of decimal digits.
Either the integer or fractional parts may be missing, but not both.
Examples:

3.14159
39.
125

The exponent part consists of the letter E or e, followed by an optional
sign, followed by a string of digits. The exponent represents the power
of ten by which the floating-point constant (mantissa) preceding the
letter e is multiplied. Examples:

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide Chapter 4 — The C Compiler (tacc) 4-9

3.45e-2
0.0345

The compiler assumes by default that all floating point constants are of
type double unless you:

* Invoke the -£single option when compiling

* Add the letter £ or F to the end of constants, as in:
#define abc 4.13F

» Cast the constant as a float, as in:
#define abc (float)4.13

If you wish floating point expressions consisting of £1oat operands and
floating point constants to be carried out in single precision, you must
select one of the options above. Otherwise the non-constants will be
promoted to double and the operation will be carried out in double
precision.

Comments begin with /* and end with the first */ following on the
input stream. This precludes the use of comments within comments.

4.4. Expressions
Unsigned operations are the same as signed operations, with the
exceptions of right shifts and comparisons. Left shifts are logical
shifts (zeroes are shifted in). The right shift is a logical shift if the left
operand is unsigned (zeroes shifted in). Otherwise, the right shift is
arithmetic (negative numbers are sign-extended).

NOTE: Shift operations are faster if the shift amount is specified with
a constant rather than a variable, and in all cases left shifts are faster
than right shifts.

Operator Hierarchy
The compiler uses the following hierarchy of operators:

-

?: (Conditional)

N

&&

|

&

1 !=

n

sun Revision A of 15 April 1989

microsystems

4-10 Chapter 4 — The C Compiler (tacc) TAAC-1 User Guide

Expressions Involving
Structures

Single and Double
Precision

Error Detection

4.5. Variables

< <= > >=

<< >>

+_

/ * %

unary ++ -—- - ~ ! & * sizeof (cast) (expr)
=> . function calls subscripting

(expr) name constant

The comparison operators generate a zero if false or a one if true.

Structure assignment is supported, including the passing of structures
by value to functions. You can also take the address or select a
member (using the ‘“.”’ operator) of a structure or union identifier.
This compiler now supports functions returning structures.

In standard C, all floating-point operations must use double precision.
In TAAC-1 C, double precision is used only if one or both of the
operands are double precision.

In general, errors such as arithmetic overflow or out-of-bounds
addresses go undetected and have undefined results.

TAAC-1 C supports these storage classes:

auto
extern
static
register
typedef

Variables declared register go into a hardware register. In TAAC-1
C, global registers are permitted. Global register variables are always
kept in their assigned registers and are never saved or restored.

Two storage class modifiers, Rc and Rrp, allow you to specify the ALU
whose register you will use for storage. Storage class modifiers
appear anywhere storage classes appear, either in addition to or as a
replacement for the storage class. Since rc and rD apply only to
register, you must always use register RD Or register RC. When
storage class modifiers are unspecified, the TAAC-1 compiler looks at

sSsun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide

Chapter 4 — The C Compiler (tacc) 4-11

DRAM Variables

Data Types

the type of variable assigned to the register. Pointer variables go into
the rRo ALU; the rest go into the rc ALU.

The number of register variables has no enforced limit, but keep in mind
that eight rc and RrD registers are reserved for fast functions (see the
fast function section), three are reserved in rC for the debugger and
scratch use , four in rD for the debugger, C stack pointer, and scratch
use, and at least one or two more registers may be needed to hold
intermediate results of complicated expressions.

Other storage class notes:

» The compiler never assigns structures or union types to registers.
» The default storage class in declarations within functions is auto.
» The default storage class in external declarations is extexn.

+ External variables may be referenced more than once, using the
extern keyword. External variables may be defined only once, by
specifying them without the extern keyword.

The scratchpad memory is currently sized at 16Kwords. For data
which takes up more than 16Kwords minus the stack size, the compiler
provides the DRAM storage class modifier to indicate that dynamic
RAM will be used to store the data. This modifier may be used in
addition to or in place of the storage class. For instance:

DRAM int x[100];
static DRAM y[1000];
DRAM float z[200][200];

The extent of memory used is determined by the DRAM range
specified when invoking the linker.

The compiler supports these data types:

char float
short double
int struct
long union
unsigned char enum
unsigned short fast

unsigned int
unsigned long

sun Revision A of 15 September 1988

microsystems

4-12 Chapter 4 — The C Compiler (tacc) TAAC-1 User Guide

Optimizing Data
Structure Definitions

The types char, short, int, enum, and long all refer to 32-bit signed
integers. Similarly, unsigned char, unsigned short, unsigned int,
and unsigned long all refer to 32-bit unsigned integers.

The compiler does not support bit fields.

The way you define your data structures has a bearing on the efficiency
of your compiled programs. In the case of array subscripting, C syntax
requires that the subscript be multiplied by the size of the object before
the subscript is added to the pointer of the object array. If the size of
the object is not one, the compiler generates a multiplication. If the
size of the object is a power of two, a shift can replace the
multiplication for a faster result. This means that it is computationally
expensive to use an array of an array, structure, or union.

For instance, assume that your program declared:
struct{
int x;
int y;
int z;
} points([10];
The compiler would have to convert the array of structure reference:
points([i]l.y = 2;
into:

* (&points + (i*3) + 1) = 2;

which requires a multiplication. On the other hand, suppose your
program declared:

int xpts[10];
int ypts([101];
int zpts([10];
You could code:

xpts[i] = 2;

which the compiler would convert to:

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 4 — The C Compiler (tacc) 4-13

*(&xpts + i*1) = 2;
Since the compiler recognizes the multiplication by one , no
multiplication is required and access is faster.

Machine-Dependent

Extensions
To provide extra efficiency, TAAC-1 C supports some non-standard
extensions to the C language syntax.

WARNING: Using these extensions makes your code incompatible
with the standard C compiler.

When declaring register variables, TAAC-1 C supports an optional,
non-standard method for binding variables to registers. To bind a
variable to a register, use an ¢ followed by a constant expression of a
register number after the variable. The constant must be in the range
from O to 127. Register numbers 0 - 63 are in ALU RC. Register
numbers 64 - 127 are in ALU RD.

As an example of variable binding, if you declared:

register cnt @8;

the variable cnt would be assigned to RC8. To avoid having the
compiler allocate registers which you intend to specify explicitly,
always declare registers with specific bindings before declaring
unbound registers.

To prevent the compiler from allocating certain registers, use the non-
standard reserve declaration, consisting of the non-standard keyword
reserve, followed by a list of one or more constant expressions
separated by commas and terminated by a semi-colon. Each constant
expression must resolve to an integer in the inclusive range from 0 -
127. For example:

reserve 1, 2, 3; /* RC register 1-3 */
reserve 65; /* RD register 1 */

prevents RC registers 1, 2, 3, and RD register 1 from being allocated by
the compiler over the scope of the declaration.

4.6. Initialization
Variables may be initialized when they are declared, according to
standard C rules. Initialization of automatic or register variables is
done as the program is running. Initialization of external or static

sun Revision A of 15 September 1988

microsystems

4-14 Chapter 4 — The C Compiler (tacc) TAAC-1 User Guide

variables is done during program load. Scalar global variables are
always initialized to zero, unless the program specifies another initial
value. Global arrays and structures are not initialized unless done so
explicitly by the program.

For reasons of expediency, string constants are handled using a
semantically incorrect syntax. Since char data types are sized as 32
bits, you might expect string constants to use one string byte per 32-
bit word. Actually, string constants are always packed four bytes per
word.

This non-standard way of handling strings was chosen on the premise
that strings will not normally be processed as arrays of characters by
the TAAC-1, but will instead be passed to the host.

Other compiler changes provide a consistent method of handling
strings. If you initialize an array of char with a string, the bytes will
again be packed four bytes per word, unless the —-stdstr option is
invoked. For instance:

char s[] = "abcdef";

reserves two words of storage, the number of 32-bit words required to
hold the 6-byte string, and trailing null. If you plan on actually
processsing the string using array subscripting, you must initialize the
string using a series of character constants:

char s[7] = "abcdef";

This example reserves seven words of storage, but the first two words
contain the packed string and the remaining five words contain zeroes.
To reserve ten words of storage and put one byte of the string in each
word, use:

char S[lO] = { Ial’ IbI, 'C', IdI' IeI, Ifl’ rory,;

If you assign a string constant to a pointer, as in:

p = "abcdef";

then the pointer points to the first of two 32-bit words containing the
string constant.

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 4 — The C Compiler (tacc) 4-15

4.7. Function Definitions

fast Functions

The sTack pc Storage
Class Modifier

Functions can be defined in any order. Functions returning structures
are not supported.

The compiler reserves a group of eight registers in each ALU for
functions declared as fast. The reserved registers can then be
assigned as required. Because the fast registers are never saved or
restored, function entry and exit requires almost no overhead. If more
than eight registers per ALU are required, other available registers will
be assigned as needed. In this case, routine overhead is increased
only by the number of registers over eight that must be saved and
restored.

Overhead will be further reduced if all non-register variables are stored
in static memory , since stack frame allocations/deallocations will not
be necessary on function entry/exit.

Do not directly or indirectly call one fast function from another, since
the fast registers are effectively global. fast functions apply best to
frequently called low-level functions requiring fair amounts of local
register storage.

Although fast functions minimize overhead, they may not always be
necessary. Low level functions using global registers may not need to
be fast if the expressions within it are simple enough to not require any
extra register assignments. A look at the generated code will help to
determine if a function is a good fast candidate.

The fast data type is only significant when applied to a function
declaration. The word fast should immediately precede the function
name. For example:

void fast funca ()
or

int * fast funcb ()

When a subroutine is called, the jump-to-subroutine instruction

pushes the return address onto the stack in the sequencer. The return
address is left there until the function returns, at which point it is
popped off the stack again. Although this scheme allows very efficient

sun Revision A of 15 September 1988

microsystems

4-16 Chapter 4 — The C Compiler (tacc) TAAC-1 User Guide

Function Prototypes

function calls, it also restricts the maximum combined function call
depth and loop statement nesting to the size of the hardware
sequencer stack (65).

If you need recursion to arbitrary depths without worrying about
overflowing the sequencer stack and you are prepared to pay a penalty
of up to seven instructions of extra overhead, then you can declare all
functions in a recursive call chain with the storage class modifier
stack_pc. This tells the compiler to pop the return address off the
sequencer stack and save it in the software stack, on entry, and to
return to the address saved in the software stack, on exit. Here is an
example:

STACK _PC factorial(n)
{
if (n==1)
return 1;
else
return n*factorial (n-1);

}

At the point of a function call, there is no distinction made between
functions declared with sTack_pc and those declared without it. The
effect of sTack_pc is completely internal to the function to which it is
applied.

NOTE: Using sTack_pc does nothing to prevent software stack
overflow. Any function which is to be given the sTackx_pc modifier
should be as sparing as possible in its declaration of ‘‘auto’’ variables.

The TAAC-1 C compiler supports the new ANSI function prototypes.
Since these are very new to C language users, explanations may be
helpful. The ANSI standard allows you to set up function arguments
either the old way, without prototypes, or the new way, with

prototypes.

In the old way of declaring functions, the number and type of arguments
are known only at the time the function body is declared. A forward or
external reference to the function contained no information about the
arguments.

In the new way of declaring functions, every declaration of the function
must contain information concerning the number and types of
arguments, and the information must be the same in every declaration.
Every time a function is declared in the new way, you must supply a

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 4 — The C Compiler (tacc) 4-17

list of argument declarations, using the usual syntax for declarators.
The declarator may include an identifier, known as a direct declarator,
or it may not, which is known as an abstract declarator. The identifier
is required when declaring a function body and optional when making a
forward or external reference.

There are special rules for functions with no arguments and for
functions with a variable number of arguments. A function with no
arguments must always be declared with a single void argument. A
function with variable arguments must always be declared with its last

argumentreading ‘.. .”" . The last argument may be preceded by a
list of required argument types.

Any function may be declared using either the old way or the new way,
but all declarations of the function must use the same way. The next
table provides examples.

When you pass an argument to a function, the compiler checks to see if
there is a prototype in scope containing information about the
argument. If the compiler finds information about the argument, the
compiler converts the actual argument to the type of the prototype
argument or else issues an error message if the conversion would
violate any of the type conversion rules. If there is no information
about the argument, either because no prototype is in scope or because
the argument is on the variable part of the list, the compiler must
assume that the type of the actual argument is what the callee expects.

For rast functions only, if you use function prototyping and the function
expects an argument to be a register variable, the compiler passes that
argument in the correct register. This applies to function pointers as
well, so long as you declare the fast function pointer in the same way

as the function it points to.

sun Revision A of 15 September 1988

microsystems

4-18 Chapter 4 — The C Compiler (tacc)

TAAC-1 User Guide

Table 4-1 Old and New Ways of Declaring Functions
Argument . .
Type Old Way of Declaring New Way of Declaring
func () ; func (void) ;
None
func () func (void)
{ {
} }
. float func(): float func(int, float, char *);
Fixed
float
func(a, b, ¢) float func(int a, float b, char *c)
int a;
float b; {
char *c; }
{
}
X error(); error (char *s,...);
Variable
error(s,al,az2,a3,ad) error(char *s, ...)
char *s;{ {
} }

Converting from Float
to Double

In the absence of specific prototype information, a £1oat formal
argument is forced to double and float actual arguments are
converted to double. If you want to pass a float argument as a float
and avoid the overhead of conversion to double, use the new way of
function declaration. Another way to avoid float-to-double conversion
is to use the -fsingle option when compiling. This option ensures
that double precision will not be used anywhere in the module.
Non-standard extensions of declaration syntax are described in the
next section. These new extensions support the naming of specific

registers.

Declaring Global
Registers

With separate compilation, you can declare global registers one way for
one group of functions and a different way for a different set of
functions. If two separately compiled functions are to refer to the same

sun

microsystems

Revision A of 15 September 1988

TAAC-1 User Guide Chapter 4 — The C Compiler (tacc) 4-19

set of global registers, both source files must have global register
declarations which match exactly in number, type, and order. This
prevents the problem of calling functions, only to have them
unexpectedly and wrongly use the caller’s global register as a local
register.

Function Calls and

Argument Size
The default size of a function argument is that of an int, which is 32
bits. If a formal argument is a 64-bit quantity and the actual argument
is not, and if there is no function prototype in scope defning the type of
the argument, then you must make sure to cast the type of the actual
argument so that the stack is set up properly for the called function.
For instance, suppose you called a function declared as:

func(x)
double x;
{

If the actual argument is an int or a float, the calls should look like
this:

int x;
func((double) x);
func((double) 3);

A better way is to use a function prototype:

void function (double); /* prototyping */
func (3); /* call */
func(double x) /* actual declaration */

{

}

4.8. Statements
The following are valid statements. Keywords are shown in boldface.
Punctuation is required as shown.

expression;

if (expression) statement

if (expression) statement else statement
while (expression) statement

do statement while (expression);

for (expressionl; expression2; expression3)

sun Revision A of 15 September 1988

microsystems

4-20

Chapter 4 — The C Compiler (tacc) TAAC-1 User Guide

statement
break;
goto label;
continue;
return;
return expression;
case const-expr:
default:
switch(expression) statement
switchf(expression) statement
loop (expression) statement

{ statementl statement? ... statementn }
Where:
switch Generates a jump table for a set of cases if the

maximum case minus the minimum case plus one
divided by the number of cases is less than 1.25.
Otherwise, the compiler simply arranges to emit code
which tests for each possible value, in the order of
appearance. The jump table switch is more efficient
in terms of space and time.

switchf Same as switch except that if the compiler generates
a jump table it does not generate code to check the
bounds of the jumped value. The compiler assumes
the value of switchf will invariably select one of the
cases and the default will never be selected. Make
sure the value you switch on is in range.

loop Not a standard C statement, 1oop allows you to save
code space in tight loops by using the sequencer
counter to control looping. The statement in the
example loops according to the number in the
expression. The result of the expression is treated
an an unsigned integer, with zero being interpreted
as 65536.

If an expression value of zero is to cause no looping,
the loop statement must be prefixed with an if
statement. If a count larger than 65535 (Oxffff) is
given, the actual count executed will be the given
count modulo 65536 (i.e., expression & Oxffff).

A continue statement inside a 1oop behaves as if
the last statement in the loop has just been

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 4 — The C Compiler (tacc) 4-21

4.9. Special Coding
Techniques

executed. In other words, the compiler decrements
and tests the count, then either branches to the top of
the loop or continues, as indicated by the test.

The total loop nesting depth and function call nesting
depth may not exceed the size of the sequencer stack
(65).

Careful coding in TAAC-1 C comes fairly close to the efficiency of hand-
coding. The best way to reduce code size and improve running time is

to use lots of register variables. However, the overhead of saving and
restoring registers may sometimes outweigh the benefit of fast variable
access. Using fast functions for low-level subroutines often

eliminates the overhead of preserving and restoring register states .

Another way of saving space and time is to keep information in
registers available to all functions. These global registers need not be
saved or restored. Using global registers minimizes the overhead of
entering and exiting low-level functions.

Since the compiler does not perform global flow analysis, try to identify
frequently used variables and place them in registers. Either declare

the variables as register variables or assign them to explicitly declared
local register variables in the scopes where the variables are used
intensively.

Many programs implement a set of operations requested by a host
processor in some sequence. Each operation typically has a small set
of frequently used variables, such as the current pixel address. Declare
these often-used items as register variables when you have operations
implemented completely in one function.

More often than not, a typical operation is implemented using several
functions. Multi-function operations work best when a set of global
variables are stored in registers available to all the functions in an
operation. Since the number of variables you can place in registers is
limited, each operation usually cannot have its own set of global
register variables. In this case, it is often expedient to declare many
global registers and use them for different purposes in different
functions.

If code space gets short, try as much as possible to pass function
parameters in global variables, rather than as function arguments.

S ll n Revision A of 15 September 1988

microsystems

4-22 Chapter 4 — The C Compiler (tacc) TAAC-1 User Guide

4.10. Switching Between
Standard C and
TAAC-1C

4.11. Run-Time Notes

Since the compiler does not attempt to identify common sub-
expressions and arrange for one-time computing, you should try to do
this yourself. If you see a reference to a memory variable, a structure,
or an array repeated more than once in a short segment of code, declare
a local register variable, evaluate the common expression into it, and
use the register in place of the expression.

To use UNIX debugging facilities, compile TAAC-1 C programs in the
standard C compiler, load the program into a library emulating the built-
in functions, and run the program in UNIX.

To switch between C and TAAC-1 C easily, first declare any global
registers:

globreg int x, y;

If using nested 100p statements, suffix the word 1oop with the level of
nesting.

If compiling with the regular C compiler, use the following directives:

#define globreg

#define fast

#define RD

#define RC

#define DRAM

#define switchf switch

#define loop(x) for(_ii=0; ii<x;++_ii)
#define loop0(x) for(_i0=0;_ i0<x;++_i0)
#define loopl(x) for(_il=0;_il<x;++_il)
#define loop2(x) for(_i2=0;_i2<x;++ i2)
short ii, i0,_ 11, i2;

To run TAAC-1 C programs under UNIX, provide a library defining
UNIX-based equivalents of each built-in function. For TAAC-1 C, use:

#define globreg register

All TAAC-1 C programs start by initializing the AM register, the MO
register, and the stack pointer, and jumping to the function main, which
behaves as if it had been called with no arguments. The compiler
translates function returns from main into hang instructions, stopping

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 4 — The C Compiler (tacc) 4-23

Function Calls

Register Usage

Non-Register
Variables

the functions. The compiler jumps to main instead of calling it to save
another level of function call.

Always call a function with the number of arguments declared for it.

Maximum function call depth is set by the sequencer stack depth of 65.
Functions which have the sTack_pc attribute are not included.

The compiler pre-allocates these registers:

RC63 reserved for the debugger

RC62 scratch (use any time) and function return LSBs
RC61 scratch and function return MSBs

RD63 reserved for the debugger

RD62 reserved for the stack pointer

RD61 scratch

RD60 scratch

During expression evaluation, the compiler requires register

-placements of all intermediate values. That is to say, no temporary

storage of intermediate results in memory takes place - only temporary
storage in registers is used. One or two registers are typically needed
for intermediate results in complex integer operations. When compiling
simple expressions, you can run out of register space if you declare too
many register variables. If the compiler runs out of registers while
compiling code for an expression, it displays the message ‘‘No more
registers available.”” You should either try to simplify the expression
or else reduce the number of register variables in use.

The linker supports up to eight different memory types. The compiler
uses three of the memory types:

Type 0 program memory
Type 1 Data in scratchpad memory (SRAM)
Type 2 Data in data/image memory (DRAM)

All non-register variables are allocated in fast scratchpad memory.
Static and global variables are allocated starting at the low address of
scratchpad memory. Function arguments and other automatic variables
are allocated on the C stack, which starts at the highest address in
scratchpad memory and grows toward zero. Static and global variables
can also go into data/image memory (DRAM storage class).

sun Revision A of 15 September 1988

microsystems

4-24 Chapter 4 — The C Compiler (tacc) TAAC-1 User Guide

C Stack Format

The stack pointer (SP) starts at the highest address in scratchpad
memory and moves towards zero. The stack pointer always points to
the last used location on the stack.

On function entry, the compiler creates a new stack pointer by
computing:

SP = SP -~ framesize
Where framesize is the space required for all automatic variables.

To call a function, the compiler pushes arguments onto the C stack,
decrementing SP by the argument size. For example, if your program
called a function consisting of two one-word arguments, the compiler
would produce code to do this:

SP = Sp - 1

*SP = arg2

SP = Sp -1

*SP = argl

jump subroutine to function
SP += 2;

The jump subroutine instruction pushes the current program counter
onto a stack in the sequencer.

On function exit, the compiler restores the stack pointer by computing:

SP += framesize
return

The return instruction sets the new program counter by popping the
sequencer stack.

Local automatic variables are located using positive offsets from the
SP. Because argument pushes affect the stack pointer, the compiler
keeps track of the total unumber of words pushed and automatically
adds the current push size to the offset. The addess of automatic
variable x is:

SP + offset (x) + pushsize

Function arguments are located beyond the end of the current stack
frame. If x is the second argument to a function and the first argument
is one word, then the second argument’s address is:

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 4 — The C Compiler (tacc) 4-25

C Stack Overflow

The Function atof ()

4.12. In-Line Assembler
Code

SP + 1 + pushsize + framesize

Where 1 is the offset to x. The first argument has an offset of zero.

The run-time stack is set up during run-time initialization so that it
starts at the highest address of scratchpad memory and grows
““pbackwards’’ towards zero. External storage starts at zero (relative

to the scratchpad memory start address of 0x30000000) and is
allocated towards the highest addresses. This leaves open the
possibility that the stack can overflow into the area occupied by
external storage. Since this condition is never checked for, it is up to
you to keep track of storage usage, to prevent stack overflow. The way
to minimize stack usage is to avoid declaring large arrays or structures
inside functions unless you first make them static.

The compiler uses the C library routine atof () for conversion of
floating point constants to binary. The function atof () does not
behave well when given strange inputs such as out-of-range

exponents. If you get a strange fault during your compile, it probably
occurred when atof () was trying to process a malformed floating point
number.

You can insert in-line assembler code within C routines by placing
assembler code between the escape sequences /s and $/. The

compiler copies all data following /$ into the assembler output file, until
$/ appears and ends the assembler inclusion. Assembly language
entries can occupy single lines:

/$ assembler code $/

or multiple lines:

/$
assembler line 1
assembler line 2

$/

Normally, in-line assembler code is used inside the body of a C
function. When doing so, you can reference C variables from within the
assembler code by using:

sun Revision A of 15 September 1988

microsystems

4.26 Chapter 4 — The C Compiler (tacc) TAAC-1 User Guide

In-Line Code Hints

@name

where name is the variable name. If name identifies a register variable,
ename will be replaced by a register number assigned by the compiler.
For instance, an included assembler line that moves register variable
alpha to register variable beta looks like this:

/$ rc pr rc_a#@alpha rc_c#@beta rc_fyout $/

This use of register names is complicated by the fact that the choice of
fields in which a register can appear depends on the ALU in which the
register resides. When writing in-line code, register locations must be
known in advance. Fortunately, the compiler allows you to specify an
ALU (RC or RD) during register declaration.

If name applies to a non-register variable, the compiler replaces @name
with an expression used to represent register addresses, as indicated
in the next table.

The compiler automatically prefixes variable names with an underscore
to avoid conflict with assembler mnemonics.

On entry to an in-line assembler code section, the compiler guarantees
that it will not have any temporary integer ALU registers active.

The MQ register in each ALU and the four scratch registers (RC61,
RC62, RD60, RD61) can be used at any time. However, be aware that
a number of TAAC-1 library routines (written in assembly language)
also use these scratch registers, without saving or restoring them.

The AM and MO registers must be explicitly saved and restored if
they are to be modified.

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 4 — The C Compiler (tacc) 4-27

Table 4-2

4.13. Built-In Functions

Replacing Non-Register Variables in Assembly Code

Storage Class @name Replaced By
external _name
static _SSnn, where nn is a compiler-generated
number
parameter CCnn+k, where k is a constant, cCnn is a

symbolic constant equated to the
‘‘framesize’’ of the current function (see the
section on framesize)

automatic k, a constant

If the stack pointer must be adjusted, then it must be restored before
exit. If your in-line code references compiler-declared variables using
@name, the stack pointer must not be modified in any way.

All other external register sources and destinations can be used freely.

The compiler recognizes built-in functions which directly address
various elements of the TAAC-1 architecture. These built-in functions
are better thought of as macros, since the compiler generates in-line
code with knowledge of the current register state of the program.

The include file builtin.h defines the mnemonics used in the built-in
functions. All programs using the built-in functions must contain the
line:

#include <taacl/builtin.h>

The file comes with TAAC-1 C. A listing of the built-in functions
defined in this file appears at the end of this chapter.

In most cases, any argument to a built-in function may be an arbitrary
expression. In some cases, an argument may be required to be a
constant expression.

For more information on the TAAC-1 architecture, consult the
hardware overview chapter.

S u n Revision A of 15 September 1988

microsystems

4-28 Chapter 4 — The C Compiler (tacc) TAAC-1 User Guide

Built-In Function
Summaries

data = input (source);

Allows data reads from one of several TAAC-1 bus sources. The
result is an integer. The source must be an integer constant, chosen
from this list:

RD_LU Read Lookup Table LU Output

RD LT Read Lookup Table LT Output

RD_AM Read the DRAM Mode Register

RD_MO Read the Miscellaneous Mode Register
RD_AR Read the Address Readback Register
RD_FS Read the Floating Point Status Register

If you are reading floating point values from lookup tables LU or LT,
you can use the built-in function asfloat () to keep the input data from
being converted (incorrectly) to float. For example:

float x;
x = input (RD_LT);

converts the LT output to float before assigning it to x. The next
example, however, treats the LT input as a float:

x = asfloat (input (RD_LT));

See the function asfloat () for further details.

output (destination, data);

This function allows you to write to one of several bus destinations.
When the destination is LT, data must be a one-word type (anything
but double). For all other destinations, data should be int, char, short,
or long. No type conversion is done in any case. The destination must
be a constant chosen from this list:

WR_AM Write the DRAM Mode Register

WR_MO Write the Miscellaneous Mode Register

WR_LR Write Lookup Table Input Register LR

WR_LT Write Lookup Table Input Register LT

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 4 — The C Compiler (tacc) 4-29

val = cc (code);

The operand must be integer and the result is integer. This function
provides access to hardware condition codes. The codes which can be

tested are:

CC_VERT Video in a Vertical Interval

CC_RLTW High 16 bits of DR < High 16 bits of DW

CC_INTR Processor Interrupt State

CC_STKW Sequencer Stack Empty or less than or equal to two

spaces left

val = abs (expr);

Returns the absolute value of the expression. The type of the result is
the same as the type of the argument.

val = frac_mul (expra, exprb);

Returns the most significant 32 bits of the 64-bit result obtained from
the integer multiplication of expra by exprb. The operands are
coerced to be integer and the result is integer.

val = rotl (data, count);

The integer result is obtained by evaluating the expression data and
performing a left rotate of count bits on the result.

val = rotr (data, count);

The integer result is obtained by evaluating the expression data and
performing a right rotate of count bits on the result.

set_ac (mask, expr);

Loads some or all of the Address Count Register (AC) with the result
of expr under the control of mask. The type of expr is coerced to be

integer. The possible bits which can be ORed together into mask are:

AC_LDX Load X Counter
AC_LDY Load Y Counter
AC_LDZ Load Z Counter
sSsun Revision A of 15 September 1988

microsystems

4-30 Chapter 4 — The C Compiler (tacc) TAAC-1 User Guide

To understand the X-Y-Z counters as they relate to 1D, 2D, and 3D
addressing, refer to the hardware overview chapter concerning
addressing modes and the AC register.

upd ac (mask);

Updates the Address Count Register (AC) under the control of mask
with the enforced restriction that you cannot simultaneously specify an
increment and decrement for the same counter. The possible bits which
can be ORed together into mask are:

AC_INCX Increment X Counter
AC_DECX Decrement X Counter
AC_INCY Increment Y Counter
AC_DECY Decrement Y Counter
AC_INCZ Increment Z Counter
AC_DECZ Decrement Z Counter

data = read ac();

Returns the result of memory read executions using the address in the
AC register and the current addresing mode in the DRAM Mode (AM)
register. The type of the result is integer. However, the built-in
function asfloat () can be used to treat the result as a floating point
value instead.

write_ac (expr);

Writes the result of expr to memory using the address in the AC
register and the current addressing mode in the AM register. The
argument is coerced to be integer, unless the built-in function aslong ()
is applied to expr.

value = asfloat(expr);

This function changes the type of its argument without changing its
value. It takes the result of the expression and treats it as a float.

The argument type may not be double, union, or struct. If the
argument is any other type, it is passed through unchanged. The result
type is £loat. This built-in function is useful in conjunction with other
built-in functions that nominally return integer results. As an example:

Su n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 4 — The C Compiler (tacc)

4-31

Example Using Built-in
Functions

float x;
X = read_ac ();

reads the value stored at the memory location pointed to by the AC
register, converts the value to float, and stores it in x. In contrast,

x = asfloat (read ac ());

reads the same value but stores it in x without converting it to float.

value = aslong(expr);

This function changes the type of its argument without changing its
value. It takes the result of the expression and treats it as a long.

The argument type may not be union or struct. If the argument type
is double, it is first cast to £1oat. If the argument is any other type, it

is passed through unchanged. The result type is 1ong. As an example:

float x;
write ac (x);

would convert x to an integer before writing it to memory. However,

write_ac (aslong (x));

would treat x as if it were an integer and write it to memory without
doing any conversion.

The following program uses the built-in functions to draw a diagonal
line in data/image memory:

#include <taacl/builtin.h>
main ()
{
t_set_addr_mode (TA 2D);
/* set 2D addressing mode */
set_ac (AC_LDX | AC_LDY, 100);
/* load x starting address */
set_ac (AC_LDZ, 100<<16);
/* load y starting address */
loop (100) {
write_ac (0xff); /* write a pixel */
upd_ac (AC_INCX | AC_INCY);
/* increment x address */
upd_ac (AC_INCZ); /* increment y address */

S ll n Revision A of 15 September 1988

microsystems

4-32 Chapter 4 — The C Compiler (tacc) TAAC-1 User Guide

}

For the sake of clarity, this example loads the x and y addresses
separately, and increments them separately. In actuality the two loads
could be combined, as could the two increments--i.e.,

set_ac (AC_LDX | AC_LDY | AC_LDz, 100 | 100 << 16);

and

upd_ac (AC_INCX | AC_INCY | AC_INCZ);

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 4 — The C Compiler (tacc) 4-33

4.14. The Include File

builtin.h

#include <taacl/taacdefs.h>
#include <taacl/taregdefs.h>

/* register defs */

/* defines for built-in functions */

/* cc()

#define
#define
#define
#define
#define
#define
#define
#define
#define

*/

_MINCC
CC_IBSY
CC_VERT
CC_RLTW
CC_INTR
CC_WERR
CC_STKW
CC_WBSY
_MAXCC

o Ul d WN BPE OO

/* input () */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

MIN IN 0x10

RD VA 0X10
RD VB 0x11
RD_LU 0x12
RD LT 0x13
RD AM 0x1l4
RD_ MO 0x15
RD_AR 0X16
RD _FS 0x17

MAX IN 0x17

/* output () */

#define
#define
#define
#define
#define
#define
#define

/* load
#define

#define
#define

MIN OUT 0x20

WR_VA 0x20
WR_VB 0x21
WR_AM 0x22
WR_MO 0x23
WR_LR 0x24

_MAX_OUT_ 0x25
commands for set_ac() */
AC_LDX 0x1

AC_LDY 0x2
AD 1DZ 0x4

sSun

microsystems

Revision A of 15 September 1988

4-34

Chapter 4 — The C Compiler (tacc)

TAAC-1 User Guide

/* incr/decr commands for upd ac()

#define
#define
#define
#define
#define
#define

AC_INCX
AC_DECX
AC_INCY
AC_DECY
AC_INCZ
AC_DECZ

0x8
0x10
0x20
0x40
0x80
0x100

*/

Revision A of 15 September 1988

TAAC-1 User Guide

Chapter 4 — The C Compiler (tacc)

4-35

4.15. The Include File

taacdefs.h

#define
#define
#define
#define
#define
#define

/* base

#define
#define
#define
#define

ON 1

OFF 0

NULL 0

TA SUCCESS 0

TA FAILURE -1

TA DONTWRITE 0x40000000

address for address banks */

TA VIDEOMEM 0x00000000
TA MICROCODEMEM 0x20000000
TA SCRATCHPADMEM 0x30000000
TA _REGISTERS 0x38000000

/* addresses of registers */

#define
#define
#define
#define
#define
#define

TA_PROGRAM_COUNTER

0x38000000

TA_INTERRUPT_VECTOR 0x38000001

TA_INTERRUPT MASK 0x38000002
TA_PROCESSOR DRDW 0x38000003
TA_WS_READBACK 0%38000004
TA_WS_MODE 0x38000005

/* values for video control register */

#define
#define
#define
in

#define

#define
#define
#define
#define
#define
#define
#define

/* bits

#define
#define
#define
#define
#define
#define
#define
#define
#define

TA_VIDEO_EXTERNAL 1 /*
TA_VIDEO TAAC 2 /*
TA_VIDEO_MIXEDNOTAAC 3 /*

TA_VIDEO MIXEDTAAC 4 / *

TA_VIDEO NONE
TA_VIDEO_COUNT
TA_SYNC_EXTERNAL
TA_SYNC_GENLOCK
TA_SYNC_TAAC
TA_SYNC_NONE
TA_SYNC_COUNT

/*
/*
/*
/*
/*
/*
/*

oW N OO,

used in the Brooktree command

TA_USE_LOOKUP 0x40 /* use
TA USE_OVERLAY 0 /* use
TA_BLINK_OCCULT 0 /*

TA_BLINK FAST 0x10 /%
TA BLINK MEDIUM 0x20 /%

TA BLINK SLOW 0x30 /%
TA BLINK1 OFF 0 /*
TA BLINK1_ON 8 /*
TA BLINKO OFF 0 /*

sun

microsystems

blink occult
blink fast 50/50 */

blink medium 50/50 */

blink slow 50/50 */

do not blink bit 1 of overlay */
blink bit 1 of overlay */

do not blink bit 0 of overlay */

pass external video */
display TAAC-1 video */
do video mix,nothing
window */

do video mix,
window */
display no video */

boundary for illegal value */
pass external sync through */
use TAAC sync, but genlock */
use TAAC-1 sync, w/ genlock */
do not output sync */

boundry for illegal value */

TAAC-1 in

register */

color look-up table */
overlay look-up table */
(75% on, 25% off */

Revision A of 15 September 1988

4-36

Chapter 4 — The C Compiler (tacc)

TAAC-1 User Guide

#define TA BLINKO_ON
#define TA MASK1l ON
#define TA_MASK1l_ OFF
#define TA MASKO_ON
#define TA MASKO_OFF

#define TA MASKO MSK
#define TA MASK1 MSK
#define TA BLINKO_ MSK
#define TA BLINK1 MSK
#define TA BLINK_ MSK
#define TA USE_MSK

/* channel numbers */

#define TA RED 0
#define TA GREEN 1
#define TA BLUE 2
#define TA ALPHA 3

sun

microsystems

= O N O B

0x1
0x2
0x4
0x8

0x30
0x40

/*
/*
/*
/*
/*

/*

blink bit 0 of overlay */

mask bit 1 of overlay */

do not mask bit 1 of overlay */
mask bit 0 of overlay */

do not mask bit 1 of overlay */

masks for enable/disable bits */

Revision A of 15 September 1988

TAAC-1 User Guide Chapter 4 — The C Compiler (tacc) 4-37

4.16. The Include File
taregdefs.h

/* AM register definitions */

#define TA AMWMSK Oxf /* word mask (write all 4 words) */
#define TA AMWM 0x100 /* word mask mode */

#define TA AMBM 0x200 /* bitplane mask mode */

#define TA AM3S 0x0 /* 3D "slice"™ mode */

#define TA AM3D 0x400 /* 3D "dice" mode */

#define TA AM2D 0x800 /* 2D mode */

#define TA AMID 0xc00 /* 1D mode */

#define TA AMBC 0x1000 /* bounds checking enable */

#define TA AMSRD 0x2000 /* serial read (vram->shift reg) */

#define TA AMSWR 0x4000 /* serial write (shift reg—>vram) */

#define TA AMSIN 0x6000 /* serial input mode (processor—->shift reg) */

/* AM register masks */

#define TA AMWM MASK Oxf /* mask for word mask */

#define TA AMBM MASK 0xf0 /* mask for bitplane mask id */

#define TA AMWE MASK 0x100 /* mask for wordmask mode enable */
#define TA AMBE MASK 0x200 /* mask for bitplane mask mode enable */

#define TA AMDIM MASK 0xc00 /* mask for 1D,2D,3D mode bits */
#define TA AMBC_MASK 0x1000 /* mask for bounds—-checking enable */
#define TA_ AMVP MASK 0x6000 /* mask for serial port enable bits */
#define TA AMDIAG_MASK 0x8000 /* mask for diagnostic bit */

/* MO register */
/* default used in "cstart" routine */

#ifdef BETAl2

#define TA MO _DEFLT (TA_MOFP_SNG | TA___MOFP_RTZ '\
TA_MORD_WORDMODE | TA_MORC_WORDMODE | \
TA_MOVA_STRIDEl | TA MOVB_STRIDEL | \
TA_MOMA NR|TA_MOLU_ RECP)

#else

#define TA MO_DEFLT (TA_MOFP_FAST MASK|TA MOFP_SNG|TA MOFP RTZ|\
TA_MORD_WORDMODE | TA_ MORC_WORDMODE | \
TA_MOVA_STRIDEL|TA MOVB_STRIDE1|\
TA MOMA NR|TA MOLU RECP)

#endif

/* vector port fields */

#define TA MOVA STRIDEl 0x1 /* bank A stride = 1 */
#define TA MOVA STRIDE2 0x2 /* bank A stride = 2 */
#define TA MOVA STRIDE3 0x3 /* bank A stride = 3 *x/
#define TA MOVA STRIDE4 0x0 /* bank A stride = 4 */
#define TA MOVB_STRIDEl 0x4 /* bank B stride = 1 */
#define TA MOVB_STRIDE2 0x8 /* bank B stride = 2 */
#define TA MOVB_STRIDE3 Oxc /* bank B stride = 3 */
sun Revision A of 15 September 1988

microsystems

4-38

Chapter 4 — The C Compiler (tacc)

TAAC-1 User Guide

#define TA MOVB_STRIDE4 0x0

/* RD configuration fields */

#define
#define
#define
#define
#define
#define
#define

/* RC configuration fields */

#define
#define
#define
#define
#define
#define
#define

TA_MORD_ BYTE
TA_MORD_BYTE

0 0x0
1 0x10

TA MORD BYTE2 0x20
TA MORD BYTE3 0x30
TA MORD HALFLO 0x40
TA MORD_ HALFHI 0x50

TA MORD_ WORDMODE 0x60

TA_MORC_BYTE0 0x0

TA MORC_BYTEl 0x80
TA_MORC_BYTE2 0x100
TA_MORC_BYTE3 0x180
TA_MORC_HALFLO 0x200
TA_MORC_HALFHI 0x280

TA MORC_WORDMODE 0x300

/* floating-point fields */

#define TA MOFP_SNG 0x4000

/* FP rounding modes */

#define
#define
#define
#¥define

TA MOFP_RTN
TA_MOFP_RTZ
TA_MOFP_RUP
TA_MOFP_RDN

0x0

0x1000
0x2000
0x3000

/* MA rounding modes */

#define
#define
#define
#define

TA MOMA NR 0x0

TA_MOMA_R30

0x80000

TA_MOMA_R31 0x100000

TA_MOMA R3031 0x180000

/*
/*
/*
/*
/*
/*
/*

/
/
/
/
/
/
/

/

/*
/*
/*
/*

/* bank B stride = 4 */

byte mode, status from byte 0 */
byte mode, status from byte 1 */
byte mode, status from byte 2 */

byte mode, status from byte 3 */
halfword mode, status from low halfwd */
halfword mode, status from high halfwd */
word mode */

* byte mode, status from byte 0 */
* byte mode, status from byte 1 */
* byte mode, status from byte 2 */
* byte mode, status from byte 3 */

* halfword mode,status from low halfwd */
* halfword mode, status from high halfwd */
* word mode */

* floating pt. single precision */

round-to-nearest */
round towards zero */
round up */

round down */

/* no rounding */

/* round using bit 30 */

/* round using bit 31 */

/* round using bits 30 and 31 */

/* MO register Lookup table function bits */

#define
#define
#define
#define
#¥define
#define

TA_MOLU_RECP
TA MOLU_SQRT
TA_MOLU_RSQT
TA_MOLU_ICOS
TA_MOLU_ISIN
TA_MOLU_IRCP

0

0x200000
0x400000
0x600000
0x800000
0xa00000

/* MO register masks */

/* reciprocal of floating-pt. value */
/* square root of float */

/* reciprocal of square root of float */
/* cosine of integer */

/* sine of integer */

/* reciprocal of integer */

#define TA MOVAVB_STRIDE MASK 0Oxf /* mask for stride bits in MO */

sSun

microsystems

Revision A of 15 September 1988

TAAC-1 User Guide Chapter 4 — The C Compiler (tacc) 4-39

#define TA MORCRD_MASK 0x3f0 /* mask for RC and RD config field */
#define TA MOFP_CLOCK_MASK 0x400 /* mask for FP clock mode */

#define TA MOFP_FAST MASK 0x800 /* mask for FP fast mode */

#define TA MOFP_ROUND MASK 0x3000 /* mask for FP round mode */

#define TA MOFP_CONFIG MASK 0xc000 /* mask for FP configuration field */
#define TA MOMA MASK 0x180000 /* mask for MA round mode field */
#define TA MOLU MASK 0xe00000 /* mask for lookup table fctn fld */

sun

microsystems

Revision A of 15 September 1988

Chapter 5
5.1.
5.2.
5.3.
5.4.

5.5.
5.6.

The Assembler (tasm)

The Assembler (£asm).uiieeeeieeeiieeeeeeeeeeeeeeeeeeeene

tasm Command SYNtaX......cccocerivinniinrenieneeneeereeneennens

Using Assembler Commands.........coccevevievinrnrenrvereennene.

..

Numeric EXPressionscceceveneeieniienenrieienreseessieseenenns

ASSEMDIET DITECHVES ceiitieieeeeeee e eeeeereeeeeeeeeerrsereareeens

Segments

...

5.3
5-3
5-3
5-4
5-4
5-5
5-5
5-6
5-8

5.1. tasm Command
Syntax

5.2. Using Assembler
Commands

The Assembler (tasm)

tasmis a two-pass, relocatable assembler for the TAAC-1. Itis
invoked by the tacc compiler, to convert assembly code into object
code.

tasm uses this command syntax:
tasm [-b] [-1] name

where name is the name of a file. If the filename suffix is omitted or is
not .asm, tasm adds .asm. The assembler then reads name . asm and
writes name . obj.

The -b option tells tasm to omit blanks lines from the listing file. If you
have passed the listing file through the tacpp macro preprocessor and
made extensive use of conditionals, use the -b option to reduce the

size and improve the readability of the listing file.

When the -1 option is given, tasm places a listing file containing the
values of each instruction in a file named name . 1st.

Valid variable names use alphabetic characters, dots (.), underbars
(_), and dollar signs ($) in any order.

When a single dot is used as a variable name, the assembler replaces
the dot with the current program counter value.

A name may be arbitrarily long, but only the first 20 characters of the
name are significant.

sun 5-3 Revision A of 15 September 1988

microsystems

5-4 Chapter 5 — The Assembler (tasm) TAAC-1 User Guide

tasmis completely case-sensitive.
Blanks and tabs separate tokens, but are not otherwise significant.

Very long lines can be continued by placing a backslash character at
the end of the line, just before the newline character.

Comments start with a semi-colon (;). Start comments anywhere on
a line. Comments stop at the end of the starting line. Alternatively, a
comment can consist of anything between /* and */, as in standard C.

All numeric entries must be in C-style binary, decimal, octal, or
hexadecimal form.

All binary numbers must start with 0b or 0B.
Hexadecimal numbers must start with 0x or 0X.
Octal numbers must start with 0.

Decimal numbers must start with a non-zero digit.

Floating point numbers currently must be represented in an integer
format.

5.3. Defining Constants

To associate a name with a constant expression in definitions files, use
the format:

name=<num_expr>

where name is the name of the constant and <num_expr> is the value
assigned to the constant.

Constant names defined this way can be used in numeric expressions
during assembly.

5.4. Assembler Input
File Format

Any line can begin with a label, which is a name followed by a colon.
The effect of defining a label is to define the name as a constant whose
value is the current program counter. Multiple labels on a line are
allowed. You may define a label only once.

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 5 — The Assembler (tasm) 5-5

Lines
There are basically three types of assembler lines:
1. Instruction defining
2. Assembler directive
3. Null (containing only labels and/or comments)

Numeric Expressions
The rules for forming numeric expressions are:

subtraction)
addition)

bitwise and)
bitwise or)

<num-expr> <num-expr> ’+’ <unary>
<num-expr> ‘-’ <unary>
<num-expr> ’&’ <unary>
<num-expr> ‘|’ <unary>

(
{
{
(
(
(

|
|
|
| <num-expr> ’*’ <unary> multiplication)
| <num-expr> '/’ <unary> division)
| <num-expr> ‘%’ <unary> (remainder)
| <num-expr> ’>>’ <unary> (right shift)
| <num-expr> ’<<’ <unary> (left shift)
| <unary>
<unary> = '—/ <primary> (negation)
| '~ <primary> (one’s complement)
| <primary>
<primary> = number
| name
| 7 (" <num-expr> ")’
<constant> = number | name

Constant expressions are formed using addition, subtraction, bitwise
AND, bitwise OR, multiplication, division, remainder, or negation
operators. The assembler evaluates expressions from left to right,
except when parentheses alter the order of evaluation. The resultis a
signed, two’s-complement integer.

Any expression involving the use of a label or an external symbol
(defined by .extern) is said to be a relocatable expression. Any
other expression is absolute.

When one relocatable expression is subtracted from another, both
expressions must be relative to the same segment, in which case the
result of the expression is absolute. If not, tasm generates an ‘‘Illegal
relocatable expression’’ error message.

S ll n Revision A of 15 September 1988

microsystems

5-6 Chapter 5 — The Assembler (tasm)

TAAC-1 User Guide

Table 5-1 Restrictions on Relocatable Expressions

Left Op Right Result
reloc T+ abs reloc
abs T+ reloc reloc
reloc >’ abs reloc
reloc 7’ reloc abs
5.5. Assembler
Directives
.end Forces end of input.

.extern <name-list>

.global <name-list>

.org <num-expr>

.align <num—-expr>

SUn

microsystems

Identifies externally defined labels.

Identifies labels which may be
referenced in other source files.

Sets the current program counter to
<num-expr>, which must be either
absolute or relative to the current
segment. In the expression, you must
not refer to a constant name or label
which is defined after .org. All values
used in <num-expr> must be fully
defined in the first pass before .org.
The new origin is always relative to
the start of the current segment.

Sets the current pc to the next address
which is a multiple of <num-expr>. For
instance, .align 4 moves the PC to
the next four-word boundary, if the PC
is not already at that boundary. <num-
expr> must be absolute and a power of
2. The start address of the current
segment in the current file is also
forced to the desired alignment
boundary. If there is more then one
.align directive in a segment in a file,
then the segment will be aligned

Revision A of 15 September 1988

TAAC-1 User Guide Chapter 5 — The Assembler (tasm) 5-7

according to the maximum .align
value found.

.zero <num-expr> Sets the next <num-expr> entries in
the current Segment to zero.

.bss <num expr> This directive reserves the next <num-
expr> entries in the current segment,
but does not assign any initial value to
them.

.title <text> <text> consists of everything up to
the end of the .title line. If listing is
enabled (see .1list), <text> displays
on subsequent page headings.

.eject If listing is enabled (see .1ist),
.eject causes the next line to appear
on a new page.

.nolist Inhibits the generation of the listing
file.
.list _ Reenables the printing of lines to the

listing file. .1ist and .nolist
directives may be nested and simply
cancel each other. If more .nolist
directives than . 1ist directives exist,
then tasm disables the listing.

.comment <text> Writes a comment record, containing
the given <text>, to the relocatable
object file.

name=<num-expr> Gives a symbolic name to a constant.

The name may be redefined as
required. The <num-expr> may contain
references to values which are defined
later, as long as all values are fully
defined by the time tasm starts
processing the line in the second pass.

line-number "filename" This type of line is put out by the C
Preprocessor. Since tasm accepts this
type of line as input, it will happily

S u n Revision A of 15 September 1988

microsystems

5-8 Chapter 5 — The Assembler (tasm) TAAC-1 User Guide

5.6. Segments

assemble a tasm program which has
first been passed through the C
Preprocessor tacpp. Line numbers
and file names in error messages are
adjusted to be relative to the original C
preprocessor input.

The main purpose of having segments is to allow you to deal with
different memory types in the same source file.

Segment names are treated as a separate class of names, so it is
possible to have both a label and a segment with the same name.

abs= Defines an absolute segment which must be loaded
starting at the given address. All other segments are
relocatable, which means that the linker can place
them anywhere in memory. Space for absolute
segments is always allocated first by the linker. The
linker generates an error message if you attempt to
overlap two or more absolute segments.

memtype= nment ype allows you to differentiate between different
types of memory - program (instruction) memory,
scratchpad memory and data/image memory. The
default is program memory.

memt ype=0 specifies program memory (PRAM).
memtype=1 specifies scratchpad memory (SRAM).
memt ype=2 specifies data/image memory (DRAM).

To create an instruction segment, use:
.segment segname, memtype=0
(code goes here)

To create a scratchpad segment, use:

.segment segname, memtype=1
(data goes here)

To create a DRAM segment, use:

.segment segname,memtype=2

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 5 — The Assembler (tasm) 5-9

To put a segment at an absolute location, use abs=n, where n is the
desired starting address of the segment. For example, to put a
particular instruction segment at the beginning of instruction memory,
use:

.segment segname,memtype=0, abs=0

S u n Revision A of 15 September 1988

microsystems

g g

g
gy

&

\\ gy

\\\\5; i

oy

P it
s

g

7ol S g

\\\\\ oy \\ 3 S\\
‘\\\\\ :\\\\g \\\ \§§\\§\
§ Uy g

& v
Yooy Wiy 1 \\\:\\f\

i,

1
U \\\\\?
o \\\\:\\\WS\

Uy
%\ \\\\; \\\\\i:
\\\{ \\\\\\\\\\\f\\ \ \\\\\i\\\
\\:\\ Do W
‘\\?\\ :\\\:\ g\\\\\ \\\\\?\3\%
;\\\t\\ \\;\\ Pl § .
\: \ " \\\\: :\\:
v \\: \ \\ Z\\\ \\
2 \\ v b \A \ \ Wiy, §
Wl \?\\:\5\;\\\? \\\\\
i Ut Mg, ey
g &\\& \\\\:\@ \\\:\W:s
\§Z\s
Uy f iy i § \\\\

0y

7,

.
.
.
.
.
.
.
.
.

The Linker (talink)....cccceenne...

Chapter 6

W

\\\
\\\1\\‘&
g
&\\
\\\\\\\‘;

secscssrssns

talink Command Syntax............

6.1.

i :\\

& e T
T o Y
gy W

By Eoy
ey A3
Pl
"
P
B
B
o TN N
Lo ey
g Bl Py
2 by Ry
Wy Wiy Ty

Mol Bl W
bl Tl N 4 T
B By kg

\\:\\

6.1.

talink
- Command Syntax

The Linker (talink)

talink isatwo-pass linker that combines relocatable object modules
produced by the tasm assembler into an absolute output module
suitable for execution on the TAAC-1.

talink [-g] [-m mapname] [-o outname] [-f name] object filex*
[-Ldirectory] [-1filename] [~d start end]

object_file Names the object file to be linked. If the filename
suffix is omitted, talink automatically appends
.obj.

With programs written in C and containing a
main (), talink automatically links in the file
start .obj, which initializes the C stack pointer,
the AM register, and the MO register, and jumps
tomain(). start.obj is part of the runtime
library, rt1ib.t1lb.

-g Links in routines to support debugging with
tadeb.
-m mapname Names the load map output file mapname .map. If -

m is not used, the linker outputs a map file of the
name outname.map. If -mis used and the
mapname includes a ‘“. ”’, the string after the
period is replaced with the suffix map.

-0 outname Names the output executable file outname . abs.
If -o is not used, then the prefix before a ‘.’ of
the first object filename is used. If no object files
are given, the prefix of the first library file name is

sun 6-3 Revision A of 15 April 1989

microsystems

6-4 Chapter 6 — The Linker (talink)

TAAC-1 User Guide

-f name

=1filename

-d start end

-Ldirectory_ name

sun

microsystems

used. If -o is used and the outname includes a
¢.”, the string after the period is replaced with
the suffix abs.

Creates an external symbol name, equivalent to
one created by a .extern assembler directive,
before any object files or libraries are read. Use
this option to force an object module containing a
global definition for the symbol to be loaded from
a library.

Gives the name of an object library created by
talib or by concatenating object modules. Only
those modules which are needed to resolve
previous external references are loaded. Library
files are read in the order they appear on the '
command line, and each library is searched
sequentially. The linker decides whether or not
to load a particular object module based on the
symbols it has already seen. Thus the order of
object files and libraries on the command line and
the order of object modules within a library file
can be significant.

Specifies an area of memory in which the linker
can allocate space for DRAM variables.

start must be a number, which identifies the
starting address. end identifies the ending
address. All numbers may be in C-style decimal,
hex, or octal format. The valid address range is
0x0 to 0x01f ffff. You can specify the -d option
multiple times, to allocate more than one memory
area.

Specifies a directory in which the linker should
search for libraries. This option applies to all
libraries that follow it in the command line. As an
example, if the talink command were:

talink myfile -L/usr/mydir -1mylib

the linker would search in
/usr/mydir/mylib.t1b for all library routines.

Revision A of 15 April 1989

TAAC-1 User Guide Chapter 6 — The Linker (talink) 6-5

Currently, the -L option specifies the only
directory in which the linker will search. That is,
if it does not find a routine in the specified
directory, it will not look in /usr/1ib as well.
The TAAC-1 Linker always links the run-time
library, rt1ib.t1b, into all programs. If you use
the -L option to specify an alternate library
directory, talink will look in this directory for
rtlib.tlb, also. Unless you want to substitute
an alternate version of the runtime library, the
last option of your talink command should
be -L/usr/lib/taacl, as shown in this example:

% talink myfile -L/mydir mylib.tlb -L/usr/lib/taacl

sun Revision A of 15 April 1989

microsystems

The Object Librarian (talib)

Chapter 7 The Object Librarian (£alib)cceceerrierrnrersrenuennns 7-3

7.1. talib Command SYNtaX.......c.eeeoimniienn. 7-3

7.1. talib Command
Syntax

The Object Librarian (talib)

The talib object librarian creates and manipulates libraries of object
modules (files) produced by the tasm relocatable assembler. These
libraries can be loaded and searched by the linker talink. Libraries
consist of concatenated object modules.

talib [option]* library [module module . . .]

library

module

-d module

-m modulel module?2

sun

microsystems

Tells talib the name of the working
library to which all operations are applied.
If the filename has no suffix, talib
normally appends .t1b. This option must
appear exactly once.

Names the object module (file) to be
edited into the working library. Object
modules with the same name as modules
already in the library will replace those
modules. Other modules are added to the
end of the working library. Filenames
must include the correct suffix; if the suffix

is omitted, talib assumes a suffix of
.tlb.

Removes a module from the working
library. If named module does not exist,
the option is ignored.

modulel moves within the library to the
position immediately in front of module2.
Both modules must already be present in
the library.

Revision A of 15 September 1988

7-4 Chapter 7 — The Object Librarian (talib) TAAC-1 User Guide

~p module Lists the named module . The default
module listing contains the name of the
module and the time of its creation. Under
the —v option, the listing includes
information about the segments and
symbols in the module(s).

-t Lists all modules. The default module
listing contains the name of the module
and its creation date. Under the -v option,
the listing includes information about the
segments and symbols in the module(s).

-1 symbol This option gives the name of a symbol as
definedina .global ora .extern
assembly language directive. talib lists
the name of any module containing the
given symbol.

-u Normally, if an object module added under
the filename option has the same name
as a module already in the library, the
existing module is replaced by the new
module. Replacement occurs only if the
replacement module is newer than the
library module. The age of a module is
determined by the creation time in its start
record.

-c Tells talib to ignore the initial contents of
the working library. Using this option is
equivalent to deleting the library file
before running talib.

-v Provides verbose output. More
specifically, -v causes information about
segments and symbols to be displayed
under the -p or -t option. This option may
be repeated for additional information.

The options that can modify the contents of the working library
(module, -d module, and -m modulel module2) are performed in the
order they appear in the command line. Occasionally this can be

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 7 — The Object Librarian (talib) 7-5

significant; for instance, if a library contains modules named a, b, and ¢,
in that order, the option pairs:

-mac-mcb
and:
-mc b -mac

will produce different results.

S ll n Revision A of 15 September 1988

microsystems

Chapter 8
8.1.

8.2.

8.3.
8.4.

8.5.
8.6.
8.7.
8.8.

8.9.

Assembly Language

Assembly Language........ccocceoeeiiiincinenieninnieeneennn. 8-3
The Processor and Instruction Word.........cccccoecvivieninnnnn, 8-3
Default Instruction Word.........ccccoveievininnnnnnnienienenenns 8-6
Sequencer (SQ) InStructionscocveeverevreeneeereeennecnnenn 8-6
Unconditional InStructions..........cececeeveneecrieneennieneereennns 8-6
Conditional Jumpscccovuvevmiviveennicicecncne [T 8-7
Conditional Subroutine Calls...........ccceeervereerrenrecreennenee 8-8
Conditional RetUINSccccccuerievienecieniiiieneeenreee e 8-8
The Condition Code Multiplexer.........ccccoecveeecierennennene. 8-9
INEEITUDPLS .ottt ettt er e e eneee 8-11
Condition Codecocuerirniicieniiiinieneereeesreere e ereneers 8-11
Constant Data Fieldcococvivninininnnnieeeeen, 8-12
ALU (RC, RD) InStructions........ccccceeveieeveenveeievessneennns 8-13
sin FIEId .o 8-14
ALU/Shifter Operations..........cccceceeeeuirieveevevveneeriveeeenenens 8-14
Operations on Selected Bytesc.cccovveveiiiiiviieeiinnnn 8-17
Barrel Shifter (BS) InStructionsccccveveeeeeeceeveeeeeenne 8-18
Multiplier/ Accumulator (MA) Instructions 8-20
Lookup Table (LU) InStructions............ccceeveeeevreeveennnennn. 8-22
Floating Point Processor (FP) Instructions..................... 8-24
Double Precision Operationscccceeeveeeveevinveneennns. 8-26
FP Status RegiSter.....ccceveiviiiiniiiiniriineeeeee e 8-32
MemOTY ACCESSeouiieiiiiiniinieiteenitereete et ene 8-32

8.10.
8.11.
8.12.
8.13.

8.14.
8.15.
8.16.
8.17.
8.18.
8.19.

Random Access Using the AI Register........ccccceevvienuninnn 8-32

Random Access Using the AC Register........ccecceeeunnnee 8-33
Addressing Modesccocveerierennicnniieiniieniiecennneeennneen. 8-34
Timing of Random Memory ACCESS.......cccoverveenvivcniinacns 8-36
Addressing Memory with the Vector Ports 8-38
DRAM Mode Register.......ccooviimiiinmeinnrennnietrecerenneees 8-41
Miscellaneous Mode Register.........cccueevenniineerenuneneennns 8-42
Data FIOW..cccueeiiieiieeeeecetee e ce et s eane 8-44
Data Path Restrictions.......ccccceoverreeniecnecnneenseccenenenenens 8-44
Registered and Unregistered Pathscc.ccoceveeeevcenncnnns 8-45
The A BUS .ottt e 8-47
The B BUS .ottt 8-48
The CBUS .c.eeeiiiiiiiiiicctireecececect e 8-49
The D BUS ittt 8-50
The E BUS..cciiiieeiiieecteie sttt eee et veeseaesnenan s 8-51
The F BUS..oiiiiiiiiieciie ettt et et 8-52

8.1. The Processor and
Instruction Word

Assembly Language

The TAAC-1 processor employs five buses, two registered ALUs, a
multiplier/accumulator, a barrel shifter, a processor lookup table, and a
sequencer. Figure 8-2 illustrates the processor architecture. Rounded
corners in this diagram represent elements that are not registered,

such as the bus transceivers, the barrel shifter output, and the lookup
table output.

Each major processor component has a set of assembly language
instructions that drive it. This chapter has one section for each major
processor component; each section describes the applicable assembly
language instructions. Other sections describe methods of memory
access, data flow, and bus communication.

You may also wish to refer to the compiler chapter, which contains a
section describing in-line code combined with C programs.

This section provides the instruction word bit map and the processor
block diagram, for reference as you read this chapter.

The TAAC-1 processor uses a 200-bit instruction word to coordinate
simultaneous operations among processor components. Fields in the
instruction word control the TAAC-1 processor components and move
data over the local bus and the six processor buses.

sSsun 8-3 Revision A of 15 September 1988

microsystems

8-4 Chapter 8 — Assembly Language TAAC-1 User Guide

Figure 8-1 Information Carried in the TAAC-1 Instruction Word

B|B
S ‘R\o BARREL
RESERVED mlR P| SHIFTER
U|lE COUNT
A N N T U TN AN N T N N N O N - LY A I I
199 192
A
VA | MEM (p: ACZ|ACY |ACX RC RD
op| op oP | orp | oP INSTRUCTION INSTRUCTION
0
| [1 |P]| | l I L 111 1 0 T T T
160
RC
c|R F
AlC| Rc M RC o RC mlm Rc
R SIN U C REGISTER U B REGISTER |y |u| A REGISTER
R(W X XX
Y|E X
L 11 | [| [T O | [
150 128
C|lR F RD
AlD| Rp M RD ?n RD x,, .\RA RD
R SIN u C REGISTER BREGISTER |y |u| A REGISTER
R|W X U X X
Y|E X
L1 | |] [I
96
CONSTANT DATA
IS S N A N I N N (N NN N N (N (N (N (N NN NN U (N NN NN NN O O A O
95 64
ClrF
CBI B E BUS D BUS C BUS B BUS A BUS
u | U CONTROL CONTROL | CONTROL CONTROL CONTROL
S
S
| I L1 I L1 11 [[
63 32
s|S|S
Q|Q|a
MULTIPLIER MULTIPLIER SEQUENCER| | |B|w| CONDITION
SELECT CONTROL OPERATION | O E A CODE
Clall
N N TN TN N N N T O Y A A L1 11 IKIKITE 1 g
31 0

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 8 — Assembly Language

Figure 8-2 TAAC-I Processor Architecture

sun

microsystems

va sger | [ve sy oF 275
l EA} A BUS l
| EB' B BUS
y \
MX_| My ix | Fy | s Bs) () 1)
RD RC MULT/ FLOATING
BARREL LOOKUP
E reaisTeren | | meaisteren| | MA Accum || PP O oR 7> BS shrFten LU “TasLe
AL AL
3' MH | ML FH | R I BR LR
S CN
| E C‘ C BUS
[} \ D BUS
ED Y
ADDRESS (]
s
AC COUNT o Al Wnaebiate| | AM RERE || MO NMSS:s SF FB
y
ACP COUNTER
PIPELINE
- X
F BUS
o e 2
DATA
READ
LOCAL /
BUS 116
DW sa) (s
>
R sQ SEQUENCER
| wRITE SEQUENCER SD SEQ

Revision A of 15 September 1988

8-6 Chapter 8 — Assembly Language TAAC-1 User Guide

Default Instruction

Word
The default instruction word is defined in the mnemonics file used by
the assembler. It contains these fields:

bs_sra,1l5 vbnop vanop mnop macn acznop acynop acxnop rc_rareg\
rc_sbreg rc_nop rd rareg rd sbreg rd nop rd car0 rd nowe)

rd yalu rc _car0 rc nowe rc yalu ccrc\

f sd e ea d fb ¢c_1lr b _fs a va cont sgnolock sgnobp sgnowt \
ma_xuns ma_yuns nomult rc_sin#l15 rd sin#l15

8.2. Sequencer (SQ)

Instructions
The sequencer determines the next instruction address, controls the
sequencer stack, and controls two register/counters. Sequencer
outputs SA and SB are F bus sources. SB always contains the value
of Register/Counter RCB. SA varies with the sequencer operation.
Unconditional
Instructions

Register/Counter A (RCA) and Register/Counter B (RCB) can be used
as loop counters. They hold 16-bit values; a value of O is interpreted
as a count of 65536.

These instructions affect the output of SA:

pofb Pop the stack and put the value onto the SA bus.

rdsp Put the value of the stack pointer onto the SA bus.

rdst Put the value on the top of the stack onto SA bus.

pora Pop the stack and put the value into RCA. Puts the
value on the top of the stack onto SA bus.

porb Pop the stack and put the value into RCB. Puts the

value on the top of the stack onto SA bus.

These unconditional instructions put the value of Register/Counter

RCA onto the SA bus.
pura Push the value of RCA onto the stack.
pufb Push the value on the F bus onto the stack.
pump Push the value of the Program Counter (MPC) onto
the stack.
ldra Load RCA with the value on the F bus.
ldrb Load RCB with the value on the F bus.
sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 8 — Assembly Language 8-7

Conditional Jumps

ldsp

cont

Load the Stack Pointer (SP) with the value on the F

bus.
No operation (default).

The F bus register (SF) and the sequencer data field (SD) are the F
bus sources for conditional jumps. The sequencer data field is taken
from the low 16 bits of the Constant Data Field of the instruction word.

juca

jucb

jura
Jjufb
just
lpst
lpxa
lpx£f

lpca

1pcbh

sun

microsystems

Decrement RCA.

If condition is true and RCA is not zero, jump to the
address on the F bus.

If condition is true and RCA is zero, continue to the
next instruction.

If condition is false, jump to the address on the F bus.
Decrement RCB.

If condition is true and RCB is not zero, jump to the
address on the F bus.

If condition is true and RCB is zero, continue to the
next instruction.

If condition is false, jump to the address on the F bus.
If condition is true, jump to the address in RCA, else
continue.

If condition is true, jump to the address on the F bus,
else continue.

If condition is true, jump to the address on the top of
the stack.

If condition is true, jump to the address on the top of
the stack, else pop the stack and continue.

If condition is true , pop the stack and jump to the
address in RCA, else continue.

If condition is true, pop the stack and jump to the
address on the F bus, else continue.

Decrement RCA.

If condition is true and RCA is not zero, jump to the
address on the stack.

If condition is true and RCA is zero, pop the stack
and continue.

If condition is false, jump to the address on the F bus.
Decrement RCB.

If condition is true and RCB is not zero, jump to the
address on the stack.

If condition is true and RCB is zero, pop the stack
and continue.

If condition is false, jump to the address on the F bus.

Revision A of 15 September 1988

8-8 Chapter 8 — Assembly Language TAAC-1 User Guide

Conditional Subroutine
Calls

Conditional Returns

Example: Loop Counter
Loaded with Constant

1psb Decrement RCB.
If condition is true and RCB is not zero, jump to the
address on the stack.
If condition is true and RCB is zero, jump to the
address in RCA.
If condition is false, continue.

jsra If condition is true, push MPC and jump to RCA, else
continue.

jsfb If condition is true , push MPC and jump to the
address on the F bus, else continue.

jsaf Push MPC. If condition, jump to RCA, else jump to
RCB.

retn If condition is true, pop the stack and jump to the
popped address.

The default condition code is ccfalse. Therefore,

jufb LABEL

would not branch to LaBEL. For an unconditional branch, use:
jufb cctrue LABEL

See ‘“The Condition Code Multiplexer’’ in the next section for more
information on condition codes.

The 1dra instruction loads the loop counter with 10. The juca
instruction decrements the loop counter; if the count is not zero, it
branches to Loop; otherwise, it falls through to the next instruction.

f sd ldra 10 ;load RCA
LOOP:
juca cctrue LOOP ;decrement RCA, jump
sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 8 — Assembly Language 8-9

Example: Loop Counter
Loaded with Variable

Example: Branch to Label

Example: Branch to
Computed Address

The Condition Code
Multiplexer

The 1dra instruction loads the loop counter with the value stored in
RDO. The juca instruction decrements the loop counter; if the count is
not zero, it branches to Loopr; otherwise, it falls through to the next
instruction.

rd_a#0 rd pr d rdsf
f sf ldra ;load RCA
LOOP:

juca cctrue LOOP ;decrement RCA, Jjump

Because the condition code is cct rue, this instruction branches
unconditionally to label DrRAwWX.

f_sd jufb cctrue DRAWX

This is another unconditional branch to the address stored in the Data
Read (DR) register.

e_dr d_edsf ;SF <- DR
f_sf jufb cctrue ;branch

Registered ALUs RC and RD, along with the floating point processor
(FP) are all sources of sequencer statuses ZERO, NEGATIVE,
OVERFLOW, and CARRY. These instructions select the sequencer
status source:

ccrc Tells the sequencer to use the status of RC in the
next instruction. Use ccrc in the same instruction as
the RC operation to be tested. If sqwait is specified,
the sequencer uses the status from RC in the current
and in the next instructions, by default.

ccrd Tells the sequencer to use the status of RD in the
next instruction. Use ccrd in the same instruction as
the RD operation to be tested. If sqwait is specified,
the sequencer uses the status from RD in the current
and in the next instructions, by default.

S ll n Revision A of 15 September 1988

microsystems

8-10 Chapter 8 — Assembly Language TAAC-1 User Guide

Figure 8-3 The Sequencer (SQ)

F BUS

/ SA
MUX

RCA RCB

RCA RCB
MUX MUX

DECA DECB

SP STACK

STACK
MUX

MPC
(CURRENT+1))

\

NEXT INST
INCR MUX

S u n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 8 — Assembly Language 8-11

Interrupts

Condition Code

ccfp Tells the sequencer to use the status of FP in the
next instruction. Use this instruction after any FP
compare operation up to and including the next FP
operation. sqwait does not affect this instruction.

ccff Tells the sequencer to use the status of FP in the
current and the next instructions. Use this
instruction after any FP compare operation up to and
including the next FP operation. sqwait does not
affect this instruction.

To jump if an RC or RD operation produces a CARRY, use either:

INSTR 0 aluop ccrc

INSTR 1 jufb cccar

Or:

INSTR O aluop ccrc jufb cccar sgwait
INSTR 1 the RC status is still valid here

To jump if an FP compares A to be greater than B, use:

INSTR O fp_cmp fp_aax fp_aby

INSTR 1 jufb ccagtb ccff

INSTR 2 the FP status is still valid here

sqbp Generates an interrupt, for debugging.

sqlock Prevents an interrupt at this instruction.

cctrue Always true (also nccfalse).

ncctrue Always false (also ccfalse) (default).

ccvert Video in vertical interval.

ncevert Video not in a vertical interval.

ccrltw High 16 bits of DR < high 16 bits of DW (unsigned).

nccrltw High 16 bits of DR >= high 16 bits of DW (unsigned).

ccintr Processor in interrupt state.

nccintr Processor not in an interrupt state.

ccstkw Stack is empty or has two or fewer available spaces.

nccstkw Stack is not empty or has more that two available
spaces.

S un Revision A of 15 September 1988

microsystems

8-12 Chapter 8 — Assembly Language

TAAC-1 User Guide

8.3. Constant Data Field

These condition codes are useful for testing the status of RC

or RD:

ccecar

nccecar
ccneg
nccneg
ccovr
nccovr
cczero
ncczero
ccenz

nccecenz

cCccoz

ncccoz

ccltz
nccltz
cclez
ncclez

CARRY status out of selected processor (FP, RD, or
RC).

No CARRY status out of selected processor.
NEGATIVE status out of selected processor.

No NEGATIVE status out of selected processor.
OVERFLOW status out of selected processor.
No OVERFLOW status out of selected processor.
ZERO status out of selected processor.

No ZERO status out of selected processor.
ncccar OR cczero.

cccar AND ncczero, same as

NOT (ncccar OR cczero).

cccar OR cczero.

ncccar AND ncczero, same as

NOT (cccar OR cczero).

ccneg XOR ccovr

NOT (ccneg XOR ccovr).

ccneg XOR ccovr OR cczero.

NOT (ccneg XOR ccovr OR cczero).

These condition codes are useful for testing the status of the £p _cmp

instruction in FP:

ccagtb
ccaleb
ccaneb
ccaegb
ccaltb
ccageb

The A input to the ALU was greater than the B input.
The A input was less than or equal to the B input.
The A input was not equal to the B input.

The A input was equal to the B input

The A input was less than the B input

The A input was greater than or equal to the B input.

The Constant Data field is a 32-bit value specified in the instruction
word. Itis a source on the A bus for immediate data. To use the data

field, specify:

a_df <value>

The least significant 16 bits of the same field are used for sequencer
data (SD), to specify branch destinations.

sun

microsystems

Revision A of 15 September 1988

TAAC-1 User Guide

Chapter 8 — Assembly Language

8-13

8.4. ALU (RC,RD)
Instructions

The ALUs require nine instruction fields for control. Two instruction
fields specify source registers. Source registers are inputs to the R and
S multiplexers for ALU operations. Both of the source register
instruction fields are available on the A and B buses, as sources. To
define the source registers, use:

r?_a#n
r?_b#n

The A source register is register number n (0 to 63).
The B source register is register number n (0 to 63).

Another instruction field specifies the destination register:

r?_c#n

The C destination register is register number n (0 to

63).

When you are writing in-line code within a C program, you can
reference register variables by using:

@name

where name is the variable name, instead of a register number (for
example, rc_a#@x). See the compiler chapter for details.

Four instruction fields select the data path through the ALU. Data
paths allow operands to come from various sources:

r? rareg

r?_rabus

r?_sbreg
r?_sbbus
r?_smg

r?_vyalu

r?_ymgq

r?_fabus
r?_fbbus
r?_fyout
r?_f?bus

r?_nowe

sSun

microsystems

R operand is the A register (default).
R operand is the A bus.

S operand is the B register (default).
S operand is the B bus.
S operand is the MQ register.

Y bus output is the ALU/shifter output (default).
Y bus output is the MQ register.

A bus value written to the register file.

B bus value written to the register file.

Y bus value written to the register file.

C or D bus value written to the register file. C bus
for RC, D bus for RD.

No value written to the register file (default).

Revision A of 15 September

1988

8-14 Chapter 8 — Assembly Language

TAAC-1 User Guide

sin Field

ALU/Shifter
Operations

One particular instruction field has variable meaning depending on the
ALU instruction. This field is a four-bit constant used for selection of
bytes and as fill bits for shift operations:

r?_sin#n

Where n is a value from O to 15.

The defaults are rc_sin#15 and rd_sin#15.

The most complex instruction field controls ALU/shifter operation. The
field allows independent shifter and ALU operations in some
instructions, while others combine the two parts for more complicated
operations. Standard C syntax is used here: ~ represents NOT, | is
OR, 7 is XOR, and & is AND. These simple ALU operations may

be combined with a shifter operation:

r?_add
r?_addinc
r?_subr
r?_subs
r?_subrdec
r?_subsdec
r?_ps
r?_pr
r?_ms
r?_mr
r?_ocs
r?_ocr
r?_incs
r?_incr
r?_xor
r?_and
r?_or
r?_nand
r?_nor
r?_andnr

r?_nop

sun

microsystems

AlLUout=R+S
ALUout=R+S+1
ALUout=S -R
ALUout=R-S
ALUout=S-R-1
ALUout=R-S-1

ALUout=S
ALU out =R
ALU out =-S
ALU out =-R
ALU out =~§
ALU out =~R
ALUout=S +1
ALUout=R +1
ALUout=RAS
ALUout=R & S
ALUout=R IS

ALUout=~(R & S)
ALUout=~ (R 1IS)
ALUout=~R & S
no operation (default)

Revision A of 15 September 1988

TAAC-1 User Guide Chapter 8 — Assembly Language 8-15

Figure 8-4 ALUs RC and RD

R

REGISTER
FILE

PR

! {

y

Y v

\ ALU ; \ MQ /
SHIFTER SHIFTER

wcw >
wcw w

MQ
REGISTER

C (FOR RC) OR D (FOR RD) BUS

S ll n Revision A of 15 September 1988

microsystems

8-16 Chapter 8 — Assembly Language

TAAC-1 User Guide

Example: Add RCO and
RC1, Write Result to RC2.

Example: Add RC1, RC2,
Shift, Write to RC3

The rc_fyout instruction is necessary for the result to be written to

RC2.

rc_rareg rc_a#0 rc_sbreg rc_b#l rc_add rc_fyout rc_c#2

These shift operations must be accompanied by an ALU operation:

r?_sra

r?_srad

r?_srl

r?_srld

r?_sla

r?_slad

r?_slc
r?_slcd

r?_src
r?_srcd
r?_mgsra
r? _mgsrl
r? mgsll
r?_mgslc

r?_loadmg

r?_pass

Shift out = ALU out shifted right arithmetic 1.

Shift out = ALU out shifted right arithmetic 1, fill with
shift out of MQ. MQ = MQ shifted right logical 1, fill
with shift out of ALU.

Shift out = ALU out shifted right logical 1, fill with
~(SIN bit 0).

Shift out = ALU out shifted right logical 1, fill with
~(SIN bit 0). MQ =MQ shifted right logical 1, fill
with shift out of ALU.

Shift out = ALU out shifted left arithmetic 1, fill with
~(SIN bit 0).

Shift out = ALU out shifted left arithmetic 1, fill with
shift out of MQ. MQ = MQ shifted left logical 1, fill
with ~(SIN bit 0).

Shift out = ALU out shifted left circular 1.

Shift out = ALU out shifted left logical 1, fill with shift
out of MQ. MQ = MQ shifted left logical 1, fill with
shift out of ALU.

Shift out = ALU out shifted right circular 1.

Shift out = ALU out shifted right logical 1, fill with
shift out of MQ. MQ = MQ shifted right logical 1, fill
with shift out of ALU.

Shift out = ALU out. MQ = MQ shifted right
arithmetic 1.

Shift out = ALU out. MQ = MQ shifted right logical
1. Fill with ~(SIN bit 0).

Shift out = ALU out. MQ = MQ shifted left logical 1,
fill with ~(SIN bit 0).

Shift out = ALU out. MQ = MQ shift left circular.
Shift out = ALU out. MQ = ALU out.

Shift out = ALU out (default).

Add RC1 and RC2, shift the result to the right one bit, and write the

result to RC3:

sun

microsystems

Revision A of 15 September 1988

TAAC-1 User Guide Chapter 8 — Assembly Language 8-17

rc_rareg rc_a#l rc_sbreg rc_b#2 rc _add rc_sra rc_fyout rc_c#3

Operations on

Selected Bytes
The next set of more complicated operations must be the only ones
performed by the ALU. Some of these operations work only on
selected bytes. The selected bytes have zero in the corresponding bit
of sin. Two common operations are r?_addi and r? subi, which
allow you to add or subtract, respectively, a constant between 0 and 15.

r? set0 The register addressed by B is both the source and
destination for this instruction. The selected bytes of
the B register are ANDed with a mask formed by an
iverted concatenation of the low four bits of the C
register address. (~C#-CO: :A#-A0).

r?_setl The register addressed by B is both the source and
destination of this instruction. The selected bytes of
the B register are ORed with a mask formed by
concatenating the low four bits of the C register
address and the low four bits of the A register
address (C3-CO0: :A3-A0).

r?_tbo0 Same as R?_SETO0 except that if the operation did not
change the value (all selected bits were already
zero), then the zZERO status bit is set. Also write
enable to the register file is internally disabled.

r?_tbl Same as r?_SET1 except that if the operation did not
change the status the value (all selected bits were
already one), then the zZERO status bit is set. Also
write enable to the register file is internally disabled.

r?_abs Computes the absolute value of the S operand.

r?_smtc Signed magnitude/two’s complement conversion of
the S operand.

r?_addi Add the low four bits of the A register address to the
S operand. Using this function, a constant from 0 to
15 can be added.

r? subi Subtract the low four bits of the A register address

from the S operand. Using this function, a constant
from 0 to 15 can be subtracted.

r? badd Computes R + S in selected bytes. Unselected bytes
pass S unaltered. If the bytes are adjacent, carry
flows between them.

r? bsubs In the selected bytes, compute R - S. In unselected
bytes, pass S unaltered. If bytes are adjacent, carry
flows between them.

S u n Revision A of 15 September 1988

microsystems

8-18 Chapter 8 — Assembly Language TAAC-1 User Guide

r?_bsubr Computes S - R in selected bytes. Unselected bytes
pass S unaltered. If the bytes are adjacent, carry
flows between them.

r?_bincs Computes S + 1 in selected bytes. Unselected bytes
pass S unaltered. If the bytes are adjacent, carry
flows between them.

r?_bms Computes -S in selected bytes. Unselected bytes
pass S unaltered. If the bytes are adjacent, carry
flows between them.

r?_bocs Computes ~S in selected bytes. Unselected bytes
pass S unaltered.

r? bxor Computes S A R in selected bytes. Unselected bytes
pass S unaltered.

r? band In the selected bytes, compute S & R. In unselected
bytes, pass S unaltered.

r?_bor Computes S | R in selected bytes. Unselected bytes
pass S unaltered.

r?_nop Output is zero (default).

8.5. Barrel Shifter (BS)
Instructions
The barrel shifter performs left and right logical and arithmetic shifts,
using a constant shift value or a variable from the count (CN) register.
The constant shift value comes from a five-bit field in the instruction
word. Using the barrel shifter with a constant value requires two steps:

1. Load barrel shifter input register (BR).
2. Shift and read the barrel shifter output.

The output of the barrel shifter is not registered, so it must be read in
the same instruction cycle as the command that shifts it. Using a shift
command does not affect input register BR.

CN register shifts operate exactly like constant shifts except that the
shift count comes from the CN register instead of the instruction word.
CN is not valid until two cycles after it is loaded. Since a right shift of
zero produces unexpected results (see below), you may want to test

the count when you are loading the CN register and branch around the
shift when the count is zero.

When the CN register is read, only the low five bits are defined. To get
the actual count of CN, AND it with Ox1f.

S ll n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 8 — Assembly Language 8-19

The following instructions load the barrel register and CN register and
read the barrel shifter output:

c_2?br load barrel register

b bs or b bs?? read output from barrel shifter
d ?2cn load CN register

d_cn or d cn?? read CN register

Where 2?72 represents a valid source or destination. See the B, C, and
D bus sections at the end of this chapter for a summary of valid sources
and destinations.

Figure 8-5 The Barrel Shifter (BS)

B BUS
SHIFT CONSTANT
INSTRUCTION BITS 192-196 c
1o
u
T 7 BS SiifTen
M 5
U
X
L
1s
BARREL
CN CONT BR REGISTER
L
“1s
D BUS C BUS
Shift Using a Constant
bs_sll,n Shift left logical n bits. Fill vacated bits with zeroes.
bs_srl,n Shift right logical -n bits. Fill vacated bits with
Zeroes.
bs_slc,n Shift left circular n bits.
bs_sra,n Shift right arithmetic -n bits.
sun Revision A of 15 September 1988

microsystems

8-20 Chapter 8§ — Assembly Language TAAC-1 User Guide

Example: Shift Using a
Constant

Shift Using the CN
Register

Example: Shift Using the
CN Register

Interesting Effects Using
the Barrel Shifter

8.6. Multiplier/
Accumulator (MA)
Instructions

Shift contents of RC7 >> 15:

rc_pr rc_rareg rc_a#7 c_rcbhr ;load barrel shifter

b bs bs srl,-15 rc_fbbus rc_c#7 ;write output to RC7

bs_sllcn Shift left logical CN bits. Fill vacated bits with
Z€TOCSs.

bs_srlcn Shift right logical -CN bits. Fill vacated bits with
Z€TOCs.

bs_slccn Shift left circular CN bits.

bs_sracn Shift right arithmetic -CN bits.

Shift contents of RC7 left by a variable number (stored in RD1):

rd pr rd rareg rd_a#l d_rdcn ;load CN with variable
;in RD1

rc_pr rc_rareg rc_a#7 c_rcbr ;load barrel shifter

b bs bs_sllcn rc_fbbus rc_c#7 ;write output to RC7 -

;NOTE CN not wvalid
;until this cycle

bs_srl,0 Always outputs a zero. Useful as a zero constant
generator.

bs_sra,0 Always outputs a -1 if BR is a negative number and
0 if BR is positive.

MA multiplies two 32-bit numbers. MA also passes one 32-bit

number and stores it or adds it to a 64-bit accumulation register. MX
and MY are operands, MH is the high 32 bits of the output, ML is the
low 32 bits of output. Using the multiplier requires a minimum of three
instructions:

1. Load MX and MY (these can be loaded in the same instruction)

2. Perform the operation

S u n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 8 — Assembly Language 8-21

3. Read MH or ML

These instructions can be pipelined. MH and ML are valid until the
next multiplier operation.

Figure 8-6 The Multiplier/Accumulator (MA)

A BUS B BUS

MX MYy

MULTIPLIER

v

ACCUMULATOR

MH ML

C BUS

Valid instructions to load the multiplier or read its output are:

a_??mx load MX

b ??my load MY

c ml or c_ml?? read ML (low 32 bits of output)
c_mh or c¢_mh?? read MH (high 32 bits of output)

Where 22 represents a valid source or destination. See the A, B, and
C bus sections at the end of this chapter for a summary of valid sources
and destinations.

MA operations include:

sun Revision A of 15 September 1988

microsystems

8-22 Chapter § — Assembly Language TAAC-1 User Guide

Example: Signed Multiply

Example:
MultiplylAccumulate

8.7. Lookup Table (LU)
Instructions

ma_pas MH/ML = MX

ma_neg MH/ML = - MX

ma_mpas MH/ML = MX * MY

ma_mneg MH/ML = - (MX * MY)

ma_madd MH/ML = MH/ML + (MX * MY)
ma_msub MH/ML = MH/ML - MX * MY)
ma_msua MH/ML= (MX * MY) - MH/ML

MA does both signed and unsigned multiplication, with an unsigned
default. If MX is signed, use the instruction ma_xsign. If MY is
signed, use the instruction ma_ysign. Sign instructions must be
expressed in addition to the operation.

The multiplier control fields are overlapped with the control fields for
the floating point processor (FP), so that both processors cannot be
active during the same instruction. The default for this field is nomu1t.

Perform a signed multiply of RC1 by RC2 and put the results in RC12:

a rcmx rc_a#l b rcmy rc b#2
ma_mpas ma_xsign ma_ysign
c ml rc_c#12 rc_fcbus

Multiply and accumulate RC5 = (RC1 * RC2) + (RC3 * RC4):

a_rcmx rc_a#l b_rcmy rc_b#2
a_rcmx rc_a#3 b_rcmy rc_b#4\
ma_mpas ma_xsign ma_ysign
ma_madd ma_xsign ma_ysign
c_ml rc_c#5 rc_fcbus

The lookup table is a set of ROMs and RAMs used to store
precomputed values that accelerate some calculations. The ROMs are
used by the math subroutines provided with the TAAC-1 and are
generally not useful for other programs. See the mathematical
functions for examples, in the TAAC-1 library chapter.

The RAMs are very useful for application-dependent calculations. The
low 13 bits of LR are an address into the 8K by 32-bit RAM, which can
be read or written through LT. To write to the lookup table RAM, load
the address into the LR. On the next cycle (or a subsequent cycle),

S u n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 8 — Assembly Language 8-23

Example: Write to Lookup
Table RAM

Example: Read from
Lookup Table RAM

write the value to LT. To read from the lookup table RAM, load the
address into the LR; the result is available from LT on the next cycle.
Results remain valid until the LR is changed.

The following instructions load or read the lookup tables:

c_??1lr load lookup table address

b 221t load lookup table RAM (LT)
b lu or b 1lu?? read lookup table ROM (LU)
b 1t or b 1t?2? read lookup table RAM (LT)

Where ?? represents a valid source or destination. See the B and C bus
sections at the end of this chapter for a summary of valid sources and
destinations.

rc_pr rc_rareg rc_a#5 c_rclr 7load LR with address in RC5
rc_b#7 b rclt ;load LT with value in RC7
rc_pr rc_rareg rc_a#5 c_rclr ;load LR with address in RC5
b 1t rc_fbbus rc_c#6 ;write LT value to RC6
sun Revision A of 15 September 1988

microsystems

8-24 Chapter 8 — Assembly Language

TAAC-1 User Guide

Figure 8-7 The Lookup Table

8.8. Floating Point
Processor (FP)
Instructions

B BUS
LU LT
A A
EXPONENT MANTISSA MISCELLANEOUS
LOOKUP LOOKUP LOOKUP
ROM ROM
8-BIT x 8K 23-BIT x 8K 32-BIT x 8K
/ MO REGISTER
/3
* |t j :
|
T T T T
S S S
31
21 - 14 - 0-
30 23 12
LR
C BUS

The Floating Point Processor (FP) performs both single and double
precision ALU and multiplication operations. The ALU and
multiplication operations can be independent or simultaneous. To use
the Floating Point Processor, it is important to understand that:

sun

microsystems

The FP is clocked only in cycles containing a floating point
instruction.

Revision A of 15 September 1988

TAAC-1 User Guide Chapter 8 — Assembly Language 8-25

* When you load the FX or FY input registers, you must clock the
Floating Point Processor by specifying a floating point operation in
the same cycle. For example, the instruction:

rc_a#0 a_rcfx rc_b#l b rcfy

would not load FX and FY. A correct instruction might contain:

rc_a#0 a_rcfx rc_b#l b_rcfy fp mul

* Each time you clock the FP, it latches the floating point instruction
for the next cycle, from the next instruction to be executed. This
means that a floating point multiply and/or ALU operation must be
directly preceded by a floating point operation (of any kind), which
latches the instruction for the multiply and/or ALU operation into
the FP. For example, the sequence of instructions:

rc_a#0 a_rcfx rc_b#l b_rcfy fp mul ;load FX and FY
cont
fp mul fp max fp mby ;multiply

would produce undefined results, because the multiply operation
was not directly preceded by a floating point operation of some
kind.

» Every time the FP is clocked, it destroys the SUM and PRODUCT
registers, as well as the FH and FL output registers. If a multiply
operation is executed by itself (for example, fp_mu1), the contents
of the SUM register are undefined. Similarly, if an ALU operation is
executed by itself (for example, fp_add), the contents of the
PRODUCT register are undefined. The instruction:

fp _paspasa fp mas fp aap

swaps the SUM and PRODUCT registers and can be used to keep
the contents of these registers from being destroyed.

To use the Floating Point Processor, follow these steps:

1. Load FX and FY. These registers can be loaded in the same cycle
or separate cycles. Specify a floating point operation in the same
instruction, to clock the input into the FX and/or FY registers.

2. Perform the floating point operation. Because the first floating point
operation in a series of contiguous floating point operations
produces undefined results, this instruction must be directly

S ll n Revision A of 15 September 1988

microsystems

8-26 Chapter 8 — Assembly Language TAAC-1 User Guide

preceded by an instruction containing a floating point operation (of
any kind). If this is a simultaneous ALU/multiplier operation, this
instruction must also specify whether the sum or product should be
written to the output registers FL and FH.

3. Read the result in FL or FH. For single-precision operations, the
result is contained in FH. For double-precision operations, FL.
contains the low 32 bits of the result; FH contains the high 32 bits.
The results are also contained in the SUM and/or PRODUCT
registers.

The following instructions load the FX and FY registers and read the

result:

a_7??fx <fp-op> load FX register

b ??2fy Or <fp_op> load FY register

c_fh or c_fh?? read FH - high 32 bits of result (entire
result for single precision operations)

c fl or c fl12? read FL - low 32 bits of result

Where ?? represents a valid source or destination. See the A, B, and C
bus sections at the end of this chapter for a summary of sources and
destinations. <fp_op> represents the floating point operation that must
be specified to load the FX and FY registers.

Double Precision

Operations
To perform double precision operations, it is important to understand
that:

» when you load the FX and FY registers, load the high half (upper
32 bits) of the double precision word first, by sourcing them onto
the A and/or B buses. Do not specify fx or fy as a destination, but
do specify a dummy floating-point operation (single precision, such
as fp_mul).

+ load the low half of the double precision word second, specifying fx
and/or fy as a destination, and specifying a dummy floating-point
operation.

« preceding every double precision operation, there must be two
cycles that contain floating-point operations. (These cyles may be
the FX,FY load cycles, dummy operations, or other floating-point
operations.) The second of these operations must be a double

S ll n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 8 — Assembly Language 8-27

* precision operation.

* in order for a double precision multiply (fp_dmul) to complete, it
must be followed by a dummy no-op cycle; using fp_mul is sufficient.

* inchained or simultaneous operations, specifically fp_dpaspasa,
both the sum and product paths need the no-op delay after the
operation, not just the product path.

Refer to the Floating Point Processor Instructions earlier in this section
for more information.

The following sequence of instructions performs a double precision
multiply:

a_rc rc_a#OP1l_HI b_rc rc_b#0P2_HI fp _mul fp max fp_mby
;load high 32 bits of X and Y
;dummy operation (single)
a_rcfx rc_a#OP1_LO b_rcfy rc_bOP2_LO fp dmul fp max fp_ mby
;load low 32 bits of X and Y
;dummy operation (double)

fp_dmul fp max fp mby smultiply

fp_mul fp max fp_mby ;allow multiply to complete
c_fh rc_fcbus rc_c#PROD_HI ;store product high 32 bits
c_£fl rc_fcbus rc_c#PROD_LO ;store product low 32 bits

As another example, the following instruction sequence performs a
double-to-integer conversion:

a_rc rc_a#0Pl_HI fp mul fp max fp_ mby
sload high 32 bits of operand,
;dummy floating-pt operation
a_rcfx rc_a#0P1_LO fp dmul fp max fp_mby
;load low 32 bits of operand
;dummy floating-pt operation
; (double precision)
fp_dinta fp aax ;convert to integer
c_fh rc_fcbus rc_c#RESULT ;store result from sum
;register (high 32 bits)

For another example, refer to adiv.asm, the source code for the double
precision divide routine in the runtime library.

sun Revision A of 15 April 1989

microsystems

8-28 Chapter 8 — Assembly Language TAAC-1 User Guide

Figure 8-8 The Floating Point Processor (FP)

A BUS B BUS

(STATUS)

MULTIPLIER ALU

Yy Y

PRODUCT REGISTER SUM REGISTER

FH FL

C BUS

sun Revision A of 15 April 1989

microgystems

TAAC-1 User Guide Chapter 8 — Assembly Language 8-29

Independent Single-
Operand ALU Operations
Single Precision
fp_absa FH = SUM = |AAl
fp_pasa FH = SUM = AA
fp_nega FH =SUM =-AA
fp flta FH = SUM = (float)AA (AA is an integer)
fp_inta FH = SUM = (int)AA (AA is a float)
fp_sgla FH = SUM = (float)AA (AA is a double)
fp_wrap FH = SUM = wrap(AA)
fp_unwe FH = SUM = unwrap(AA) (AA is exact)
fp_unwi FH = SUM = unwrap(AA) (AA is inexact)
fp_unwr FH = SUM = unwrap(AA) (AA is rounded)
Double Precision
fp_dabsa FH/FL = SUM = |AAl
fp_dpasa FH/FL = SUM = AA
fp_dnega FH/FL = SUM = -AA
fp_dflta FH/FL = SUM = (double)AA (AA is a float)
fp_dinta FH = SUM = (int)AA (AA is a double)
fp dbla FH/FL = SUM = (double)AA (AA is an integer)
fp_dwrap FH/FL = SUM = wrap(AA)
fp_dunwe FH/FL = SUM = unwrap(AA) (AA is exact)
fp_dunwi FH/FL = SUM = unwrap(AA) (AA is inexact)
fp_dunwr FH/FL = SUM = unwrap(AA) (AA is rounded)
Independent Double-
Operand ALU Operations

Absolute value operations can be combined in the same instruction
with independent double-operand ALU operations.

Single Precision

fp_add FH=SUM = AA + AB
fp_suba FH=SUM =AB - AA
fp_subb FH =SUM = AA - AB
fp_cmp sets compare condition codes
fp_aabs AA =1AAl

fp_babs AB =|ABI

Double Precision

fp_dadd FH/FL =SUM = AA + AB
fp_dsuba FH/FL =SUM = AB - AA
fp_dsubb FH/FL =SUM = AA - AB

S un Revision A of 15 September 1988

microsystems

8-30

Chapter 8 — Assembly Language

TAAC-1 User Guide

Independent Multiplier

Operations

Simultaneous ALU and
Multiplier Operations
with Selectable Output

fp_dcmp
fp_aabs
fp_babs

sets compare condition codes
AA =1AAl
AB = |ABI

Absolute value operations can be combined in the same instruction
with independent multiplier operations.

Single Precision

fp mul

fp mulwra
fp mulwrb
fp_aabs
fp_babs

Double Precision

fp dmul
fp_dmulwra
fp dmulwrb
fp_aabs
fp_ babs

FH =PRODUCT = MA * MB

FH = PRODUCT = MA * MB (MA is wrapped)
FH = PRODUCT = MA * MB (MB is wrapped)
MA = |AAl

MB = |ABI

FH = PRODUCT = MA * MB

FH = PRODUCT = MA * MB (MA is wrapped)
FH = PRODUCT = MA * MB (MB is wrapped)
MA = |AAl

MB = |ABI

fp_outp and fp_outs determine which output (sum or product) is
passed to the FH/FL registers. It must be specified in the same
instruction as a simultaneous ALU and multiplier operation.

Single Precision

fp muladd
fp mulsuba
fp mulsubb
fp mulnega
fp_mulsub2
fp mulpasa
fp pasadd
fp _passuba
fp passubb
fp_paspasa
fp_pasnega
fp_passub2

sun

microsystems

PRODUCT = MA * MB, SUM = AA + AB
PRODUCT = MA * MB, SUM = AB - AA
PRODUCT = MA * MB, SUM = AA - AB
PRODUCT = MA * MB, SUM =-AA
PRODUCT =MA * MB, SUM =2 - AA
PRODUCT = MA * MB, SUM = AA
PRODUCT = MA, SUM = AA + AB
PRODUCT = MA, SUM = AB - AA
PRODUCT = MA, SUM = AA - AB
PRODUCT = MA, SUM = AA
PRODUCT = MA, SUM =-AA
PRODUCT =MA, SUM =2 - AA

Revision A of 15 September 1988

TAAC-1 User Guide Chapter 8 — Assembly Language 8-31

Double Precision

fp_dmuladd PRODUCT = MA * MB, SUM = AA + AB
fp_dmulsuba PRODUCT = MA * MB, SUM = AB - AA
fp_dmulsubb PRODUCT = MA * MB, SUM = AA - AB
fp_dmulnega PRODUCT = MA * MB, SUM =-AA
fp_dmulsub2 PRODUCT = MA * MB, SUM =2 - AA

fp dmulpasa
fp _dpasadd
fp_dpassuba
fp_dpassubb
fp_dpaspasa

PRODUCT = MA * MB, SUM = AA
PRODUCT =MA, SUM = AA + AB
PRODUCT = MA, SUM = AB - AA

PRODUCT = MA, SUM = AA - AB

PRODUCT = MA, SUM = AA

PRODUCT = MA, SUM =-AA
PRODUCT =MA, SUM =2 - AA

fp dpasnega
fp dpassub2

Output Select

fp_outp FH/FL = PRODUCT
fp_outs FH/FL = SUM

Input Multiplexer Controls
fp_max MA = X input
fp_mas MA = SUM register
fp_mby MB =Y input
fp_mbp MB = PRODUCT register
fp_aax AA =X input
fp_aap AA =PRODUCT register
fp_aby AB =Y input
fp_abs AB = SUM register

Example: Add RDI to

RD?2 (single precision)
a_rdfx rd_a#l b_rdfy rd b#2 fp mul
fp_add fp_aax fp_ aby
c_fh e_ec d_ed rd fdbus rd c#3

;load RD1 and RD2
;add
;store result in RD3

Example: Multiply/
Accumulate RC1 * RC2 +
RC3 * RC4 (sgl precision)
a_rcfx rc_a#l b_rcfy rc_b#2 fp mul ;load RC1 and RC2
a_rcfx rc_a#3 b_rcfy rc_b#4 fp mul fp max fp mby
;multiply RC1*RC2,
;load RC3 and RC4
;multiply RC3*RC4,
; SUM=PRODUCT
; PRODUCT=
; SUM+PRODUCT
;store result in RC5S

fp_max fp_mby fp aap fp mulpasa
fp_abs fp aap fp_add

c_fh rc_fcbus rc_c#5

sun

microsystems

Revision A of 15 September 1988

8-32 Chapter 8 — Assembly Language TAAC-1 User Guide

FP Status Register
The floating point status word is available on the B bus in the cycle
after each operation. The next table contains FP status bit definitions.

Table 8-1 Floating Point Status Word Bit Definitions

Bit Definition
0 A NaN has been input to the multiplier or the ALU, or
an invalid operation has been requested.
1 The result of an operation is inexact.
2 Overflow
3 Underflow
4 The multiplier output is a wrapped number or the ALU
output is a denorm.
5 The input to the multiplier is a denorm.
6 The mantissa of a wrapped number has been altered
due to rounding.
7 Status was generated by multiplier.
8 reserved
9 A NaN or a denorm has been input from the B bus.
10 A NaN or a denorm has been input from the A bus.

8.9. Memory Access
TAAC-1 memory access runs through vector ports VA and VB, for
sequential DRAM access, or through the Data Read and Data Write
registers (DR and DW), for random access. The TAAC-1 has two
address registers. The Al register (Address Immediate) accepts only
1D addresses. The AC register (Address Count) allows 1D, 2D, or

3D addressing.

Random Access Using

the AI Register
The insructions for reading and writing using the Al register are:
mreadai read at address stored in Al register
mwriteai write to address stored in Al register

To read from a particular address, load the Al register with an address
and use the mreadai instruction. The value addressed goes to Data
Read Register DR.

To write to an address, load the Al register with the address and use

S u n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 8 — Assembly Language 8-33

Example: Read Word at
Address 0x17456

Example: Write Contents
of RC12 1o Address
Contained in RDO

Random Access Using
the AC Register

the mwriteai instruction.

a_df e_ea d edai 0x17456
mreadai
e dr a_ea rc_c#12 rc_fabus

;load AT with 0x17456
;read addressed value to DR
;store value in RC12

rd_a#0 rd pr d rdai rc_b#12 b_rc e ebdw

mwriteai

;AT=RD0,DW=RC12
;write

The Address Count Register (AC register) allows random memory
access in 1, 2, or 3 dimensions. AC address reads and writes use

three steps:

1. Load, increment, or decrement AC register.

2. Use the macp instruction to calculate new address, based on the
addressing mode set in the AM register. macp uses the contents of
the AC register at the end of the previous cycle to generate an
effective address, which it stores in the Address Count Pipeline

(ACP) register.

3. Write or read, using effective address generated by macp. DW
contains the value to be written; DR receives the data read.

These instructions need not be consecutive, but they must occur in this
order. They can be pipelined, to allow single-instruction reads or
writes. (See the second example at the end of this section.)

AC has its own instructions for reading the D bus, allowing separate
reads of different bytes on the bus. Instructions acx1d, acyld, and aczld
enable reads into the X, Y, and Z fields of the Address
Register/Counter, as shown in the next diagram.

NOTE: X,Y, and Z are only field symbols and are not the same as x,

y, and z addresses.

sun

microsystems

Revision A of 15 September 1988

8-34 Chapter 8 — Assembly Language

TAAC-1 User Guide

Figure 8-9 Format of AC Register Fields

Addressing Modes

One-Dimensional
Addressing

31

16 15 8 7 0

The following instructions are available for AC reads and writes:

mreadac
mwriteac
macp
acxld
acyld
aczld
acxi
acyi
aczi
acxd
acyd
aczd

read at address stored in AC register
write to address stored in AC register
generate effective address from AC register
load X field of AC register

load Y field of AC register

load Z field of AC register
increment X field of AC register
increment Y field of AC register
increment Z field of AC register
decrement X field of AC register
decrement Y field of AC register
decrement Z field of AC register

The next table summarizes instructions used to load, increment, and
decrement the AC register.

Bits 10 and 11 of the DRAM Mode Register (AM register) set the
addressing mode for the AC register:

W N —=O

3-dimensional (slice)
3-dimensional (dice)
2-dimensional
1-dimensional

One-dimensional addressing passes the address without change.

sun

microsystems

Revision A of 15 September 1988

TAAC-1 User Guide

Chapter 8 — Assembly Language

8-35

Table 8-2 Summary of AC Register Instructions
Function D Bus Instructions
1D Addressing

Load address 1D address acxld acyld aczld

Increment address acxi acyi aczi

Decrement address acxd acyd aczd

2D Addressing
Load x address x address acxld acyld

Load y address
Increment x address
Increment y address
Decrement x address

y address << 16

aczld
acxi acyi
aczi

acxd acyd

Decrement y address aczd
3D Addressing

Load x address x address acxld
Load y address y address << 8 acyld
Load z address z address << 16 aczld
Increment x address acxi
Increment y address acyi
Increment z address aczi
Decrement x address acxd
Decrement y address acyd
Decrement z address aczd

NOTE: Instructions can be combined to affect all three AC fields
simultaneously.

Two-Dimensional

Addressing
Two-dimensional addressing rearranges the address to accommodate
pixel addressing:

2ZZZYYZZZ7Z7ZZ77ZZXXXXXXXX

3@ ® (8)

Where z = low eleven bits of Z
y = low two bits of Y
x = all eight bits of X

sSun

microsystems

Revision A of 15 September 1988

8-36

Chapter 8 — Assembly Language

Three-Dimensional

Addressing

In 2D mode, the Z field holds the y coordinate and X/Y field the x
coordinate. There are effectively 10 bits of spatial x and 11 bits of
spatial y resolution (1024 x 2048).

3D ‘‘dice mode’’ addressing rearranges addresses to allow efficient
use of memory for 3D cubes:

ZYXZYXZYXZYXZYXZYXZYX
Where x = low seven bits of X
y = low seven bits of Y

z = low seven bits of Z

The next table helps you build and size cubes for your application.

TAAC-1 User Guide

Table 8-3 Video Interpretation of ‘‘Dice Mode’’ Data Cubes
Cube Size X Size Y Size Total Words Number of Cubes available
2 8 1 8 256K
4 64 1 64 32K
8 256 2 512 4K
16 256 16 4K 512
32 256 128 32K 64
64 1024 256 256K 8
128 1024 2048 2048K 1

Timing of Random
Memory Access

In 3D “‘slice mode’’ addressing, the X, Y, and Z fields of the AC
register are loaded in the same manner as ‘‘dice mode,’’ but the

address is passed through for memory access without bit reordering.
This mode is most useful in indexing through 256 x 256 images, such as
CT scan data.

The number of cycles it takes a read or write to complete depends on
the address register being used (Al or AC) and the memory type being
accessed.

« When the Al register is used, scratchpad memory (SRAM) reads
and writes take one cycle to complete; data/image memory
(DRAM) accesses require three processor cycles.

* When the AC register is used, SRAM access again takes one cycle

sSun

microsystems

Revision A of 15 September 1988

TAAC-1 User Guide Chapter 8 — Assembly Language 8-37

to complete. For DRAM reads or writes within the same four-
word block (when all but the low two address bits are the same),
all accesses after the first take one cycle to complete. For DRAM
reads or writes within the same 1024-word block (all but the low
10 address bits are the same), all accesses after the first take two
cycles to complete. All other random DRAM reads and writes take
three processor cycles.

Addressed data is valid in the Data Read Register (DR) one

instruction (not necessarily one processor cycle) after the read. If you
are reading from DRAM and use DR in the next instruction, the TAAC-
1 stops the processor clock until the read has actually completed.
Otherwise there is no delay unless the next instruction contains

another memory access. That is to say, while the read is taking place,
the processor can be performing other instructions, such as
computations, so long as these instructions do not involve DR or
another memory access.

An sqwait instruction used in conjunction with the read forces the
processor to wait for completion of the read before executing another
instruction. sqwait data-read instructions look like this:

a_df e ea d edai 0x17456 7load AI with 0x17456)
mreadai sqwait e dr a_ea rc_c#12 rc fabus
;read value into RC12

Two conditions cause a processor delay after a write:

* The write will not complete in the current cycle, and the current
instruction changes the DW register, the address registers (Al or
AC), or the address mode (AM) register.

» The operation will not complete in the current cycle, and the next
instruction contains another memory access.

sqwait has no effect on writes.

Example: Write a Pixel
Write a pixel to DRAM using the AC register and 2D addressing (x
address stored in RD2, y address stored in RD1). Note that before
every write (or read) to a new address, you must use the macp
instruction to latch the address into the ACP.

#include <taacl/builtin.h>
#define RED Oxff

S ll n Revision A of 15 September 1988

microsystems

8-38 Chapter 8 — Assembly Language

Example: Single-
Instruction Loop

8.10. Addressing
Memory with the
Vector Ports

d am rd_fdbus rd c#0 ;RD0 = AM register contents

rd_and a_df rd_rabus rd_sbreg rd b#0 rd_fyout rd c#0\
TA_AMDIM MASK ;mask out 1D/2D/3D bits
rd or d_rdam a_df rd rabus rd sbreg rd b#0 TA AM2D
;set AM reg. for 2D mode

a rd c_ecbr e_ea rd a#l
rd or rd sbbus b_bs bs_sll,0x10 rd_rareg rd_a#2\

acxld acyld aczld ;load y<<16 | x
a df a_eadw RED\ ;load DW with shade
macp ;latch address into ACP
mwriteac ;write pixel

Write a line of 100 pixels. The x address is again stored in RD2, y
address in RD1.

#include <taacl/builtin.h>
#define RED O0xff

; (set BAM register for 2-D mode as above)
a rd rd a#l e ea c_ecbr

rd or rd sbbus b bs bs sl11,0x10 rd rareg rd_a#2\
acxld acyld aczld\

f sd 1ldra 100 ;load y<<16 | x address
; and loop count
a _df e eadw RED\ ;load data word w/shade
macp\ ;latch next address
acxi acyi ;increment to next addr+l
XLOOP:
mwriteac\ ;write pixel
macp\ ;latch next address
acxi acyi\ ;increment to next addr+l

f sd juca cctrue XLOOP ;loop back

The vector ports are used for fast sequential access to DRAM memory.
DRAM memory is divided into 1024-word segments called pages.
When you are reading from DRAM, a single read loads the serial shift
register with the contents of a page of memory. Then, from the vector
ports, the TAAC-1 processor has access to a new 32-bit word from

S u n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

TAAC-1 User Guide

Chapter 8 — Assembly Language 8-39

Reading Data through the
Vector Ports

the shift register on every processor cycle. The shift register can be
loaded only on page (1024-word) boundaries, but the starting address
you specify sets a pointer into the shift register, on a four-word
boundary.

Writing to DRAM, you can load the shift register, via the vector ports,
with a new word every processor cycle. Then a single write writes the

entire contents of the shift register to DRAM memory.

Instructions to write to or read from the vector ports are:

vast start VA (vector port A) read or write operation
vard read from shift register to VA

vawr write from VA to shift register

a_va?? VA is source on A bus

a_2?va VA is destination on A bus

vbst start VB (vector port B) read or write operation
vbrd read from shift register to VB

vbwr write from VB to shift register

b_vb?? VB is source on B bus

b _22vb VB is destination on B bus

1. Load DRAM Mode Register AM bits 13 and 14 with 1 for shift
register load mode. The builtin.h include file defines this bit
setting as TA_AMSRD.

2. Do aread from the starting address. The lower two bits of this
address are ignored, placing the effective address on a four-word
boundary. This read loads the shift register from the data/image
memory.

3. Change AM register bits 13 and 14 back to 0, for random access
mode, if needed.

4. Do aread from another page in data/image memory, to ensure that
the shift register has been completely loaded.

5. Toread data from bank A:

Use vast to start the read from VA

Do a second vast (for hardware reasons)

The first word is now available in VA. Use a_va as a source,
and vard to read the next word, until the end of the page
(1024-word boundary).

S ll n Revision A of 15 September 1988

microsystems

8-40 Chapter 8 — Assembly Language TAAC-1 User Guide

Writing Data through the
Vector Ports

To read data from bank B:
Use vbst to start the read from VB
Do a second vbst
The first word is now available in VB. Use b vbasa
source, and vbrd to read the next word, until the end of the
page.
6. Return to step one as needed.

See the next example and the clahe/map demo source code for examples
of vector port reads.

1. Load AM register bits 13 and 14 with a 3 (Ta_ams1n), for serial
input mode.

2. Write to the desired address. This sets the starting address. The
lower two bits of this address are ignored, producing an effective
address on a four-pixel boundary.

3. Change AM register bits 13 and 14 back to 0, random access mode,
if needed.

4. To write to bank A:

Write the first word of data to the VA register.

Use vast for the first write and load the VA register
with the second word of data.

Then use va as a destination and vawr as needed until
the end of the page.

To write to bank B:
Write the first word of data to the VB register.
Use vbst for the first write and load the VB register
with the second word of data.
Then use vb as a destination and vbwr as needed until
the end of the page.

5. Load AM register bits 13 and 14 with a 2 (ta_amswr), for shift
register store mode.

6. Do a write to the desired address. This writes the entire contents
of the shift register to data/image memory. Note that if you do not
want to change the entire page of memory, you must first load the
shift register (using a serial read) from image memory, then use the
vector port to write to the desired addresses, then write the entire
page back to DRAM.

7. Return to step one as needed.

S ll n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 8 — Assembly Language 8-41

Refer to the t_erase function in the TAAC-1 library for an example of
Vector port writes.

Example: Vector Port

Reads
Read 100 words from Bank B using vector port B and write them to
Bank A (using the AC register) starting at address O:

#include <taacl/builtin.h>

#define SRC 0x100000 /* data source */
#define DST 0x0 /* data destination */
#define LPCOUNT 100 /* count */

;load shift register from DRAM

a_df TA AMSRD e_ea d_edam ;set AM for serial read
a_df SRC e_ea d_edai
mreadai\ ;shift register <- DRAM

a_df TA AMID e_ea d_edam ;set AM register for 1D

;read from another page to make sure shift register load is
;done
a_df 0 e ea d edai
mreadai\
a_df DST e_ea d_ed acxld acyld aczld
;AC register <- dest address

;begin vector port operation

vbst\ ;start read
macp\ ;latch address into ACP
acxi acyi aczi ;increment address
vbst\ ;second vbst needed
f_sd ldra LPCOUNT-1 ;load loop counter
vbrd b_vb e ebdw ;DW <- first word, read next
READLOOP :
vbrd b_vb e_ebdw\ ;DW <- VB, read next
mwriteac\ ;write to destination
macp\ ;latch new dest address

acxi acyi aczi\
juca cctrue READLOOP
;increment to next src

;address and loop back
DONE:

mwriteac ;write last word

8.11. DRAM Mode
Register
The DRAM Mode (AM) Register controls bitmask and wordmask
selection and enable, addressing modes for the AC register, data
bounds checking (hardware z-buffering), and the access mode for

S ll n Revision A of 15 September 1988

microsystems

8-42 Chapter 8 — Assembly Language TAAC-1 User Guide

data/image memory. Bit assignments are shown in the next table.
Refer to the hardware chapter for a further description of these
functions. The include file <taacl/taregdefs.h> contains contant
definitions for these fields.

Table 8-4 Bit Assignments in DRAM Mode Register AM

Bits Mode Definition
0-3 Word mode mask for random writes to DRAM (1 = write enable)
Channel mode mask for vector port writes to DRAM (1 = channel enable
4-7 Bitplane mask select
8 Enable word/channel mode mask
9 Enable bitplane masked write
10, 11 Addressing Mode

0 = 3D Addressing - “‘Slice’” Mode
1 = 3D Addressing - ““Dice’” Mode
2 = 2D Addressing
3 = 1D Addressing
12 Write enable Data Bounds Checking, when 1, write if DW <= DR
13,14 DRAM Access Mode
0 = random access
1 = shift register load (DRAM — shift register)
2 = shift register store (shift register - DRAM)
3 = enable serial write (processorshift — register)
15 1 = disable read into DR

8.12. Miscellaneous
Mode Register
The Miscellaneous Mode (MO) register controls:

+ the stride (address increment amount) for the vector ports
* RC and RD modes (byte, halfword, word)

» modes for the floating-point processor (FP)

* rounding modes for the integer multiplier/accumulator

* lookup table functions

sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide Chapter 8 — Assembly Language 8-43

Table 8-5 Bit Assignments in Mode Register MO

Bit Number Register Values Assignment

VA stride (address increment amount) of 4
stride of 1 (default)

stride of 2

stride of 3

VB stride of 4
stride of 1 (default)
stride of 2

stride of 3

0,1

2,3

RD configuration, byte mode, status from byte 0
byte mode, status from byte 1

byte mode, status from byte 2

byte mode, status from byte 3

halfword mode, status from low halfword
halfword mode, status from high halfword
word mode (default)

reserved

RC configuration, byte mode, status from byte 0
byte mode, status from byte 1

byte mode, status from byte 2

byte mode, status from byte 3

halfword mode, status from low halfword
halfword mode, status from high halfword
word mode (default)

reserved

NN R WN=O NOANPLWN—=O WO oo

10 FP clock mode (default = 0)
11 FP fast mode (default = 1)

FP round mode, towards nearest
round towards zero (default)
round towards infinity

round towards negative infinity

12, 13

WA =D

14, 15 FP configuration (default = 1)

16 - 18 none reserved

19, 20 MA round mode, no rounding (default)
round using bit 30
round using bit 31

round using bits 30 and 31

Lookup Table function, 1 / LR (default)
SQRT(LR)

1/ SQRT(LR)

SIN(LR) (fixed point)

COS(LR) (fixed point)

I /LR _ (fixed point)

reserved

21-23

AUNH WLND=O WN=O

T
~1

NOTE: MO default is defined in taregdefs.h as TA MO DEFLT.

S ll n Revision A of 15 September 1988

microsystems

8-44 Chapter 8 — Assembly Language TAAC-1 User Guide

8.13. Data Flow

Data Path Restrictions

RC and RD modes control carry between bytes or halfwords. Byte
mode disables carry between bytes and controls which byte the status
will come from. Halfword mode disables carry between halfwords and
controls which halfword the status will come from.

The hardware overview chapter provides a fuller description of the MO
register. Bit assignments are shown in preceding table. The include
file <taacl/taregdefs.h> contains constant definitions for these fields.

In general, all bus sources drive all bus destinations, either on one bus
or between different buses through the E bus. Data flow over a bus is
specified by:

<bus>_ssdd
Or:
<bus>_ss

Where <bus> is the bus name (a, b, c, d, e or £), ssrepresents the
source, and dd represents the destination. Operations without
destinations use <bus>_ss.

The rules on data patch restrictions for wide instruction word
architectures are quite complex. With its multitude of processor buses
and processor elements, the TAAC-1 is no exception. Rather than
define a complete specification of worst-case hardware timings
(processor propagation times, register setup times, gate delays, etc.)
that might equate into a complex set of programming rules, the TAAC-
1’s data flow restrictions can be summarized by the following
conservative guidelines:

¢ Operands for integer ALUs RC and RD should be sourced only from
registers on the A, B, or E buses, or from the register file.

* Destinations for integer ALUs RC and RD should be limited to
registers on the C and D buses, respectively, or the E bus.

The TAAC-1 C compiler follows these rules. A slightly more
aggressive policy permits any register-to-register data path, as long
as the data passes through no more than one integer ALU. Itis
possible, but not recommended, to create even longer data paths that
may seemingly provide correct numerical results, but fail in obscure

S ll n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 8 — Assembly Language 8-45

Registered and
Unregistered Paths

ways. For example, the processor might fail to take a conditional
branch properly, because of a setup time violation of the condition code
register in the previous, long data path instruction.

» EA, EB, EC, and ED are not registers, so the instruction:

a df e _ea d _edam

moves data from the data field to DRAM Mode Register AM.
» FB isnot a register, so the instruction:

f_sd d_fb acxld acyld

loads the X and Y fields of the AC register with the low 16 bits of
the sequencer.

» SFis aregister, so the instruction:

e dr d edsf £ sf jufb cctrue

does not jump to the contents of DR. This requires two instructions:

e dr d edsf ; SF=DR
f_sf jufb cctrue

* LRisregistered but LU and LT are not, so using the lookup table
requires two instructions:

e _dr c_eclr ; LR=DR
b_lu rc_fbbus rc_ c#23 ;RC23= LU

» The ALUs don’t need to be registered, so this instruction is valid:

a_va b vb rd rabus rd_sbbus rd _add d rd e_eddw
;DW= VA+VB

* BRisregistered, but BS is not, so using the barrel shifter requires
two instructions:

S ll n Revision A of 15 September 1988

microsystems

8-46 Chapter 8 — Assembly Language TAAC-1 User Guide

e dr c_ecbr ;BR=DR
b _bsvb bs_sll,5 ;VB=BS= BR << 5

» The CN register must be loaded two instructions before a shift, so a
variable shift requires 3 instructions:

e dr d_edcen ; CN=DR
a df e _ea c_ecbr ; BR=DF
b bsvb bs_sl11,5 ;VB=BS = BR << 5
sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 8 — Assembly Language 8-47

8.14. The A Bus

Sources

Explicit Destinations

Implicit Destinations

Valid A Bus Instructions

VA

DF
EA

RC

VA

FX

EA
RC

Vector Port A. Useful for reading sequential data in the
lower bank of video memory. Once started, this port can
read one 32-bit word per instruction without delay for 1024
words.

Data Field. 32-bit data from the current instruction.

E bus to A bus transceiver. Transfers 32-bit values to and
from the E bus.

Registered Accumulator C. Grabs the value in the A
register of RC specified by rc_a#n.

Registered Accumulator D. Grabs the value in the A
register of RD specified by rd_a#n.

Vector Port A. Useful for writing sequential data in the
lower bank of video memory. Once started, this port can
write one 32-bit word per instruction without delay for 1024
words.

Floating Point Processor X Operand.
Multiplier/Accumulator X Operand.

E bus reads A bus using e_ea?? as a source.
Registered Accumulator C can grab the A bus for
operations using rc_rabus and write the A busto a
register using rc_fabus.

Registered Accumulator D can grab the A bus for
operations using rd_rabus and write the A bus to a
register using rd_fabus.

Most combinations of source and destination are valid on the A bus.
The only exception is a source VA with a destination VA, which makes
no sense. As a rule, the A bus command (or any bus, for that matter)
follows a standard of a_ssdd, where ss is the source and dd is the
destination. Operations without destinations use a_ss.

a vafx
a_vamx
a_va

sun

microsystems

a_dfva a_eava a_rcva a_rdva
a dffx a_eafx a_rcfx a_rdfx
a_dfmx a_eamx a_rcmx a_rdmx
a_df a_ea a_rc a_rd

Revision A of 15 September 1988

8-48 Chapter 8 — Assembly Language

TAAC-1 User Guide

8.15. The B Bus

Sources

Explicit Destinations

Implicit Destinations

Valid B Bus Instructions

b_ebvb
b _ebfy
b _ebmy
b _eblt
b _eb

VB

EB

RC

FS

BS
LU
LT

VB

FY
MY
LT

EB
RC

b _rdvb
b _rdfy
b rdmy
b rdilt
b rd

sun

microsystems

Vector Port B. Useful for reading sequential data in the
lower bank of video memory. Once started, this port can
read one 32-bit word per instruction without delay for 1024
words.

E bus to B bus transceiver. Transfers 32-bit values to and
from the E bus.

Registered Accumulator C. Grabs the value in the B
register of RC specified by rc_b#n.

Registered Accumulator D. Grabs the value in the B
register of RD specified by rd_b#n.

Floating Point Status.

The shifted output of the barrel shifter.

Lookup Table PROM output.

Lookup Table RAM output.

Vector Port B. Useful for writing sequential data in the
lower bank of video memory. Once started, this port can
write one 32-bit word per instruction without delay for 1024
words.

Floating Point Processor Y Operand.
Multiplier/Accumulator Y Operand.

Lookup Table RAM.

E bus reads B bus using EB as a source.

Registered Accumulator C can grab the B bus for
operations using rc_sbbus and write the B bus to a register
using rc_fbbus.

Registered Accumulator D can grab the A bus for
operations using rd_sbbus and write the B bus to a register
using rd_fbbus.

b _rcvb b bsvb b _luvb b _1ltvb b_fsvb
b rcfy b vbfy b bsfy b lufy b 1ltfy

b _rcmy b_vbmy b bsmy b lumy b ltmy

b_rclt b_vblt b bslt

b _rc b vb b bs b lu b 1t

Revision A of 15 September 1988

TAAC-1 User Guide Chapter 8 — Assembly Language 8-49

8.16. The C Bus

Sources
EC E bus to C bus transceiver. Transfers 32-bit values to and
from the E bus.
RC Registered Accumulator C. Values come from the Y
multiplexer.
RCH Registered Accumulator C. High 16 bits of RC’s Y bus,
copied into the high and low halves.
RCL Registered Accumulator C. Low 16 bits of RC’s Y bus,
copied into the high and low halves.
FH Floating Point Processor. High 32 bits of the double-
precision result or all of the single-precisions result
FL Floating Point Processor. Low 32 bits of the double
precision result.
MH Multiplier/Accumulator. High 32 bits of result
ML Multiplier/Accumulator. Low 32 bits of result.
LR Lookup Register, for readback.
Explicit Destinations
BR Barrel Register, the Barrel Shifter input.
LR Lookup Register. Lookup address for the lookup table.
Implicit Destinations
EC E bus can read the C bus using EC as a source.
RC RC can grab the value off the C bus using rc_fcbus.

Valid C Bus Instructions

C_ecbr c_mhbr c¢_mlbr c_fhbr c_flbr C_rcbr c_lrbr
c_eclr ¢_mhlr c_mllr c_fhlr c_fllr c_rclr
c_ec c_mh c_ml c_fh c_fl c_rc c_lr c rcl c_rch

S un Revision A of 15 September 1988

microsystems

8-50 Chapter 8 — Assembly Language TAAC-1 User Guide

8.17. The D Bus

Sources
ED E Bus Transceiver. Transfers 32-bit values to and from the
E bus.
RD Registered Accumulator D. Values come from the RD’s Y
bus.
RDH Registered Accumulator D. High 16 bits of RD’s Y bus,
copied into the high and low halves.
RDL Registered Accumulator L. Low 16 bits of RD’s Y bus ,
copied into the high and low halves.
CN Barrel Shift Count Register. 5-bit readback source.
MO Mode Register. 24-bit readback source.
FB F Bus Transceiver. Reads the 16-bit value off of the F bus.
AR Address Readback Register. Contains the address of the
last memory address read or written with AC or AI. This
is for use by the debugger only.
AM DRAM Mode Register. 16-bit readback source.
Explicit Destinations
Al Address Immediate Register. Specifies ordinary linear
addresses.
MO Mode Register. Controls miscellaneous processor
functions.
AM Addressing Mode Register. Controls memory access
functions.
CN Barrel Shift Count Register.
SF F Bus Register. Cannot be read until the instruction after it
has been loaded.
Implicit Destinations
ED E bus can read the D bus using ED as a source.
RD RD can read the D bus using rd_rdbus.
AC AC can read the D bus using acx1d, acyld, and/or aczld.
Valid D Bus Instructions
d edai d arai d rdai
d_edam d_fbam d_rdam
d_edmo d_rdmo
d edcn d rdcn
d edsf d_amsf d_fbsf d_rdsf
d ed d ar d am d_mo d _cn d fb d rd d_rdh d rdl
S u n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 8 —— Assembly Language 8-51

8.18. The E Bus

Sources

Explicit Destinations

Implicit Destinations

Valid E Bus Instructions

e_drdw
e _drwh
e drwl
e drwl
e_drwg
e_drwb
e_drwa
e _dr

EA
EB
EC
ED
CD
DC

DR

Dw

EA
EB
EC
ED

e_eadw
e_eawh
e _eawl
e _eawr
e _eawg
e _eawb
e_eawa
e_ea

sun

microsystems

E bus to A bus Transceiver. Transfers data to and from
the A bus.

E bus to B bus Transceiver. Transfers data to and from the
B bus.

E bus to C bus Transceiver. Transfers data to and from the
C bus.

E bus to D bus Transceiver. Transfers data to and from the
D bus.

Special. Reads 16 high bits of the C bus and the 16 low bits
of the D bus.

Special. Reads 16 high bits of the D bus and the 16 low
bits of the C bus.

Data Read Register. Contains data read in the last read
instruction. DR is not valid until after the memory read
instruction.

Data Write Register. Can be written in 7 different ways:

DW Write enable to all 32 bits of DW.

WL Write enable to bits 0-15 of DW.

WH Write enable to bits 16-31 of DW.

WR Write enable to bits 0-7 (Red) of DW.
WG Write enable to bits 8-15 (Green) of DW.
WB Write enable to bits 16-23 (Blue) of DW.
WA Write enable to bits 24-31 (Alpha) of DW.

A bus can read the E bus using EA as a source.
B bus can read the E bus using EB as a source.
C bus can read the E bus using EC as a source.
D bus can read the E bus using ED as a source.

e _ebdw e_ecdw e_eddw e _cddw e dcdw
e _ebwh e_ecwh e_edwh e_cdwh e_dcwh
e _ebwl e_ecwl e_edwl e_cdwl e_dcwl
e_ebwr €_ecwr e_edwr e_cdwr e_dcwr
e_ebwg e_ecwg e_edwg e_cdwg e _dcwg
e_ebwb e_ecwb e_edwb e_cdwb e_dcwb
e_ebwa e_ecwa e_edwa e_cdwa e dcwa
e eb e_ec e _ed e _cd e_dc

Revision A of 15 September 1988

8-52 Chapter 8 — Assembly Language TAAC-1 User Guide

8.19. The F Bus

Sources

SD Sequencer Data. Reads the 16 low bits of the instruction
word data field.

SF F Bus Register, read to the F bus.

SA Sequencer A bus. Reads register/counter A, the stack
pointer, or a value off the stack, depending on the sequencer
instruction.

SB Sequencer B bus. Reads the current value of
register/counter B.

Implicit Destinations
FB D bus can read the F bus using FB as a source.
SQ Sequencer can read the F bus using F bus as a source.
Valid F Bus Instructions
f sd f sf f sa f sb
S ll n Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 8 — Assembly Language

8-53

Figure 8-10 Instruction Summary

RC and RD operand select Shifts (with alu op) Sequencer Operations

r?_a#n Asrcregn r?_sra alu >> 1 arithmetic pofb pop stack, SA = stack
r?7_bi#n B srcregn r?_srad alu>>1,MQ>>1 rdsp SA = stack ptr

r?_c#n Cdstregn r?_stl alu >> 1 logical rdst SA =stack

r?_rareg R operand = A reg r?_srfld alu>>1,MQ>>1 pora pop stack, RCA = stack
r?_rabus R operand = A bus r?_sla alu << 1 arithmetic porb pop stack, RCB = stack
s?_sbreg S operand = B reg r?_slad alu<<1,MQ<<1 pura push RCA onto stack
r?_sbbus S operand = B bus r?_slc alu<<>1 pufb push F bus onto stack
r?_smgq S operand = MQ reg r7_sled alu<<1,MQ<<1 pump push MPC onto stack
r?_yalu Y mux=alu shifter output | r?_src alu<>>1 ldra RCA =F bus

r?_ymgq Y mux = MQ reg r?_srcd alu>>1,MQ>>1 ldtb RCB=Fbus

r?_fabus Write A bus to reg r?’_mgqsra MQ >> 1 arithmetic Idsp SP=Fbus

r?_fbbus Write B bus to reg r?_mgsrl MQ >> 1 logical cont noop

r?_fyout Write Y mux outp toreg | r?_mqsll MQ << 1 logical juca RCA--, cond. jump = F bus
r?7_f?bus Write C or D bus to reg r?_mgslc MQ<<>1 jucb RCB--, cond. jump = F bus
r?7_nowe write nothing to reg r?_loadmq MQ =alu jura cond. jump = RCA

ALU " r?_p_ass alu out (flefault) . J:ufb cond. J:ump =Fbus

9 dgpera “i:i S 1?_sin#n Selects fill for shift just cond. jump = stack
r?_addinc R+S+1 | ALU byte operations Ipst ands'é‘;?g r;isctﬁﬁlt(ir?;e
r?_subr S-R r?_set0 set reg B selected bytes & mask pop .

- Ipxa cond. pop stack, jump= RCA
r?_subs R-S r?_setl set reg B selected bytes | mask ;

— Ipxf cond. pop stack,jump = F bus
r?_subrdec S-R-1 r?_tb0 test reg B selected bytes & mask I RCA- 3-way branch
r?_subsdec R-S-1 r?_tbl test reg B selected bytes | mask pea > 2-way branc

- Ipcb RCB--; 3-way branch
r?_ps S r?_abs absolute value of S Ipsb RCB--: 3-way branch
r?_pr R r?_smtc S signed-magnitude -> twos comp. . d ’ h MPC. jump =
r?_ms -S r?_addi S + low 4 bits of A reg address Jsra ;(g A pus »Jump =
r?_mr R r?_subi S - low 4 bits of A reg address ‘b cond. bush MPC. iump =
1?_ocs ~S ?_badd R+S, in selected bytes J E ba p »Jump
1?_ocr ~R r?_bsubs R -, in selected bytes ot L oush MPC. fumn =
r?_incs S+1 r?_bsubr S -R,in selected bytes IS cond. pus - Jump =
r?_incr R+1 r?_bincs S+ 1, in selected bytes RCA or F bus .
r7_xor RAS ?_bms S, in selected bytes retn cond. pop stack,jump = stack
r?_and R&S r?_bocs ~8§, in selected bytes Interrupts
r?_or RIS r?_bxor S AR, in selected bytes sqbp generate interrupt for debug
r?_nand ~R & S) r?_band S & R, in selected bytes sqlock prevent interrupt at this
r?_nor ~R18) r?_bor SIR, in selected bytes instruction
r?_andnr ~R&S r?_nop output is zero .

r?_sin#n nis byte-select mask Constant Data F'eld.
Condition Code Multiplexer cerltw DR < DW (u 16 bi adf A bus=data fneld .
rbw 1 pper 16 bits) fsd F bus=datafield (16 bits)
cere status from RC ccintr interrupt state
cerd status from RD cestkw stack empty or <= 2 spaces
ccfp status from FP cccar carry out FP condition codes (from fp_cmp)
ccff status from FP ceneg negative Ccagtb A>B
Condition Codes (FP,RC,RD) ccovr overflow ccaleb A<=B
(n<cond.code> negates sense) cCzero zero ccaneb A<B
cctrue always true ccenz neecar OR cezero ccaeqb A==B
ccfalse always false cccoz cecar OR cezero ccaltb A<B
cevert vertical interval ccltz ccneg XOR ccovr ccageb A>=B
ceintr interrupt state cclezccneg XOR ccovr OR cczero
ccintr interrupt state

Sun

microsystems

Revision A of 15 September 1988

8-54 Chapter 8 — Assembly Language TAAC-1 User Guide

Figure 8-11 Instruction Summary (continued)

Barrel Shifter (BS) Multiplier/Accumulator (MA) Random Memory Access
c¢_?7r load BR a_77mx load MX mreadai read value at Al addr
b_bs?? read BS b_??my load MY mreadac read value at AC addr
d_7?cn load CN c_mil?? read ML mwriteai write to Al address
d ¢cn read CN c_mh?? read MH mwriteac write to AC address
bs_sll,n << n logical ma_pas MH/ML = MX macp generate effective
bs_srl,n >> -nlogical ma_neg MH/ML = - MX address from AC
bs_slec,n << n circular ma_mpas MH/ML = MX * MY acxld load AC X field
bs_sra,n >> -n arithmetic ma_mneg MH/ML = -(MX * MY) acyld load AC Y field
bs_sllcn << CN logical ma_madd MH/ML = MH/ML + aczld load AC Z field
bs_srlecn >> -CN logical MX * MY) acxi increment AC X field
bs_sleccn << CN circular ma_msub MH/ML = MH/ML - acyi increment AC Y field
bs_sracn >> -CN arithmetic (MX * MY) aczi increment AC Z field
bs_srl,0 outputisO ma_msua MH/ML = acxd decrement AC X field
bs_sra,0 outputis -1 if BR<0, MX * MY) - MH/ML acyd decrement AC Y field
output is 0 if BR>=0 | ma_xsign MX is signed aczd decrement AC Z field
ma_ysign MYis St gned Vector Port Memory Access
nomult no multiply vist begin read/write
Floating Point Processor (FP) (sgl precision) vlrd read shift reg to va or vb
a_7x <fp_op> load FX vIwr write va or vb to shift reg
b_??qu, <fp_op> load FY Lookup Table (LU)
c_fh?? read FH ¢.?r load LR b.22t load LT
c_f?? read FL b_lu?? read LU b 1?2 readLT
fp_absa FH = SUM = 1AAl
fp_basa FH = SUM = AA fp_cmp sets compare cond. codes
fp_nega FH=SUM=-AA fp_aabs AA = |AAl
fp_ﬂta FH = SUM = (float) AA fp_babs AA =|ABI
fp_inta FH = SUM = (in)) AA fp_mul FH = PRODUCT = MA * MB
fp_dbla FH/FL = SUM = (double)AA fp_mulwra FH = PRODUCT = MA * MB (wrap A)
fp_sgla FH = SUM = (float)AA fp_mulwrb FH = PRODUCT = MA * MB (wrap B)
fp_wrap FH = SUM = wrap(AA) fp_aabs MA = |AAl
fp_unwe FH = SUM = unwrap(AA) fp_babs MA = |ABI
fp_unwi FH = SUM = unwrap(AA) fp_muladd PRODUCT = MA * MB, SUM = AA + AB
fp_unwr FH = SUM = unwrap(AA) fp_mulsuba PRODUCT =MA * MB, SUM = AB - AA
fp_max MA =X input fp_mulsubb PRODUCT = MA * MB, SUM = AA - AB
fp_mas MA =SUM register fp_mulnega PRODUCT = MA * MB, SUM = -AA
fp_mby MB =Y input fp_mulsub2 PRODUCT =MA * MB,SUM =2 - AA
fp_mbp MB = PRODUCT register fp_mulpasa PRODUCT = MA * MB, SUM = AA
fp_aax AA =X input fp_pasadd PRODUCT =MA,SUM = AA + AB
fp_aap AA = PRODUCT register fp_passuba PRODUCT =MA, SUM = AB - AA
fp_aby AB =Y input fp_passubb PRODUCT =MA, SUM = AA - AB
fp_abs AB = SUM register fp_paspasa PRODUCT = MA, SUM = AA
fp_pasnega PRODUCT = MA, SUM =-AA
fp_passub2 PRODUCT = MA, SUM = 2-AA Default word
fp_outp FH = PRODUCT bs_sra,15 vbnop vanop mnop macn acznop acynop acxnop \
fp_outs FH = SUM rc_rareg rc_sbreg rc_nop rd_rareg rd_sbreg rd_nop rd_carO\
p_add FH=SUM=AA + AB rd_nowe rd_yalu rc_carQ rc_nowe rc_yalu ccrc £_sd e_ea\
fp_suba FH=SUM=AB - AA d_fbc_Irb_fs a_va cont sqnolock sqnobp sqnowt ma_xuns\
fp_subb FH=SUM=AA-AB ma_yuns nomult rc_sin#15 rd_sin#15
sun Revision A of 15 September 1988

microsystems

TAAC-1 User Guide

Chapter 8 — Assembly Language

8-55

Figure 8-12 Data Flow Summary

The A Bus

Sources:

VA Vector port A

DF Data field

EA A bus data

RC RC A reg (rc_af#n)

RD RD A reg (rd_a#n)
Explicit Destinations:
VA Vector port A

FX FP X operand
MX MA X operand

The B Bus

Sources:

VB Vector port B

EB E bus data

RC RC B reg (rc_b#n)
RD RD B reg (rd_b#n)
ES FP status

BS BS output

LU LU output

LT LT output

Explicit Destinations:
VB Vector port B

The C bus

Sources:

EC Ebususese ec??
RC rc_c#n

RCH rc_c#n (Y bus high)
RCL rc_c#n (Y bus low)
FH FP high result

FL FPlow result

MH MA high result
ML MA low result
LR LR readback
Explicit Destinations:
BR BSinput

LR LR address

Implicit Destinations:
EC Ebususese_ec??
RC RCusesrc_fcbus

Implicit Destinations: FY FP Y operand
EA Ebususese_ea?? MY MAY operand
RC RC uses rc_rabus orrc_fabus LT LT input
RD RD uses rd_rabus or rd_fabus
Implicit Destinations:
The D bus EB E bus uses ¢_eb??
Sources: RC RC uses rc_sbbus or rc_fbbus
ED E bus data RD RD uses rd_sbbus or rd_fbbus
RD RD Y bus
RDH RD Y bus high 16 bits The E Bus
RDL RD Y bus low 16 bits Sources:
CN BS Count reg EA A bus data
MO Modereg EB B bus data
FB F bus data EC C bus data
AR Address Readback reg ED D bus data
AM AMreg CD C bus high 16 bits and
D bus low 16 bits
Explicit Destinations: DC D bus high 16 bits and
Al Alreg C bus low 16 bits
MO Modereg DR Data Read (DR) register
AM AMreg
CN BS Count reg Explicit Destinations:
SF F bus reg DW Data Write (DW) register
WL DW bits 0-15
Implicit Destinations: WH DW bits 16-31
ED E bus uses e_ed?? WR DW bits 0-7
RD RD uses rd_fdbus WG DW bits 8-15
AC AC uses acxld, acyld, aczld WB DW bits 16-23
WA DW bits 24-31
Implicit Destinations:
EA A bus uses a_ea??
EB B bus uses b_eb??
EC C bus uses c_ec??

ED D bus uses d_ed??

The F Bus

Sources:

SD Sequencer Data

SF Fbusreg

SA Sequencer A bus (RCA,
stack ptr, or stack)

SB Sequencer B bus (RCB)

Implicit Destinations:
FB Dbususesd_fb
SQ Sequencer

Data Flow
Bus command format:
<bus>_ss or

<bus>_ssdd
where
<bus> ab,c,de,orf
SS source
dd destination

sun

microsystems

Revision A of 15 September 1988

Chapter 9

9.1.

9.2.

9.3.

9.4.

9.5.

9.6.

9.7.

9.8.

Utilities

UHHEES.....ciitireeectniereereenessssersseesessesesssesssssssssens 9-3
INTOAUCHON.....cvictreieeiintetenrete et sreae et esee e 9-3
ras2taac, Write Sun Rasterfile to TAAC-1
MEMOTY ...ttt sr s evenes 9-5
taabs2o, Convert .abs File to Sun Object File............... 9-6
Command SYNtaX.......ccccvuerrrrerreerenrirenneeseeresessesesssaenes 9-6
EXampIe ...ttt casessesnne 9-6
tachan, TAAC-1 Channel Selection Tool...................... 9-8
Command SYNtaX........ceccceeerrererneeererenieniereresesessssesensas 9-8
Functions Callsccccocemveenneeennnnnreeneeeseneresescneesenene 9-8
taclear, TAAC-1 Clear TOOL......cccovuvvrerrerrerurrrerenvennens 9-9
Command SYNtaX.........cccecevereeenerererernererenissnsernsesiseseesenes 9-9
tadeb, TAAC-1 Debugger.........ccoeeueeninrnrnrnecienenene. 9-10
Command SYNAX......cocecererrrererererererereescesesesereesssssssans 9-10
USer INtEIface........coeviiiceccinrninirienrieeeeneereneereanane 9-10
USage NOLEScccvvveeceeercrerererinrnrerereree e esesesesuseessssns 9-13
General Information..........ccoeeeeeeeeneeeicneneneenescscneeneenes 9-16
tainit, TAAC-1 Initialization Toolccoeverveeeenen.. 9-20
Function Calls.........coceeuevevmevnienrieneneeeeeereenee e enesenene 9-20
taload, Image File Loader.........ccccoeernrennriiinnincnnnnne 9-21
S€E AlSO ..ttt et e sees 9-26
tamakedef, Include File Generatorcoeueveueunen... 9-27

Command SYNtaX.......ccevevererrererermeireneseseeeseesesescsnenenns 9-27

9.9.

9.10.

9.11.

9.12.

9.13.

9.14.

9.15.

COmMMANAScooveeereeniieneeceneseeseessesssissiessesssesssssseesaseess 9-28
Useful FUNCHONScccevienminiiniinniiiineiienieiiessessnesns 9-29
taprof, TAAC-1 Profiler....c.cccocuimvirnvericvieicnccnneninncnenee 9-31
Command SYNaX.......cccceererreereensrersersssssossassanssansssssssnes 9-31
User Interface........uoevcvvieieinincnnnnccinnencesnesscessesesesanes 9-31
taread, read TAAC-1 Data/Image Memoryccc.... 9-35
SEE AlSO c.cuenrireeeceeerereernessssteie st ssas st s s ssss s senaes 9-35
tarun, TAAC-1 Program Execution Tool............ccccec... 9-36
Command SYNtaX........ccoeverniinineneniinoninsnneieeneseoa 9-36
Function Calls........cccooviviiiiimnncnninnnccnniiinecnnenecnssessenens 9-36
tashow, TAAC-1 Show Tool........cccvvmrreereereeeriririnrnnnen. 9-37
Command SYNaX.......ceeveereeriencnessiessenssesseesssssssassasssnsesns 9-37
Interactive Commands..........ccivvirreruerenrirecisneciiesensans 9-38
£atool, TAAC-1 TOOL....eiiieiiecrieeeeeereesecsssssssssssassnnes 9-39
Command SYNtaX.......c.coceereeerenraecnsessanseassacsseesseessssssasesns 9-39
More on the —t OPHON.......cocevuerierinenininirrestnresseiseenans 9-39
X WiIndows VErSiON........covveirieninrnnsnenensiesessessscesssssesssosee 9-41
The Video Editor........ccoiiinniininnnininnnneennniinsinsencsesens 9-41
Seeing TAAC-1 Video in a Single-Monitor

Configurationcccccceerveeeireereeeneesseeeseesesseesnessaessasssesane 9-44
Keying Setup: Single-Monitor Operation...........ccceeverenne 9-44
Adjusting Video Parameterscocoeeevuereecnecneeseennessecnens 9-45
Windowing Library..........cccovvivrninininnncnccninnenenrcenennens 9-48
Seeing TAAC-1 Video in a Dual-Monitor

Configurationcoecveceeereeneneereerseseeseeseessessesssesassenssnes 9-48
tatxt2o, Convert Text File to Sun Object File.............. 9-50

Command SYNtaX......ccceceerrerreenereeerenrensenresseeseessessesseesses 9-50

Utilities

This chapter describes these TAAC-1 utility programs:

ras2taac

taabs2o
tachan
taclear
tadeb
tainit

taload

tamakedef
tamon
taprof

tashow

tarun

taread

tatool

tatxt2o

sun

microsystems

Writes a Sun rasterfile to a rectangular region of the
TAAC-1 frame buffer and optionally displays it.

Converts TAAC-1 absolute file to Sun object file.
Enables or disables TAAC-1 video channels.
Clears TAAC-1 image memory to specified colors.
TAAC-1 process debugger.

Initializes the TAAC-1.

Loads IFF image file into TAAC-1 data/image
memory.

Generates host include file from TAAC-1 link map
Accesses TAAC-1 processor and memory.
Profiles TAAC-1 program execution time.

Displays TAAC-1 image memory on single-
monitor configurations.

Opens the TAAC-1, loads and executes a TAAC-1
program.

Reads TAAC-1 data/image memory into image file
in IFF format.

Provides a viewport into TAAC-1 image memory
for single monitor configurations. It also sets and
modifies video keying parameters.

Converts text file to Sun object file.

9-3 Revision A of 15 April 1989

9-4 Chapter 9 — Utilities TAAC-1 User Guide

The chapter also describes the following Image File Format (IFF)
utilities:

e iffcreate prepends header to an image file
 iffreorder reorganizes the pixels of an IFF file

¢ iffgetkey returns values of keywords in an IFF file

* iffsetkey changes/adds keyword/value pairs to an IFF file
e iffaddkey adds keyword/value pairs to an IFF file

e iffstrip removes the header from an IFF file

* iffcutout crops an IFF file

* ras2iff converts a binary Sun rasterfile to an IFF file

e iffcolor converts an 8-bit IFF file to a 24-bit color IFF file

These IFF utilities are described in the taload section of the chapter.

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide RAS2TAAC Chapter 9 — Utilities 9-5

9.1. ras2taac, Write
Sun Rasterfile to
TAAC-1 Memory
ras2taac writes a Sun rasterfile to a rectangular region of TAAC-1
data/image memory and optionally displays it in a window. Usage:

% ras2taac (-n) [-x xaddr] [-y yaddr] rasterfile

Where:
* -n specifies that no TAAC-1 window is to be created on the host
for display.

* -xspecifies the image’s starting x address in TAAC-1 data/image
memory; the default value is zero.

* -y specifies the image’s starting y address in TAAC-1 data/image
memory; the default value is zero.

* rasterfile specifies the input Sun rasterfile. This file format is
described in the Pixrect Reference Manual.

sSsun Revision A of 15 April 1989

microsystems

9-6 Chapter 9 — Ultilities TAABS20 TAAC-1 User Guide

9.2. taabs2o, Convert
.abs File to Sun
Object File

Command Syntax

Example

The utility taabs2o converts a TAAC-1 executable in absolute file

(. abs) format to a host object file so that it can be linked into a host
program. The object file (. o) that is created should be added to the
object file list in the link command. To download and execute the
TAAC-1 program, call ta_runm() or ta_runb() from the host program,
as described in the host library chapter of the TAAC-1 Software
Reference Manual.

To invoke taabs2o, type:

% taabs2o filename.abs filename.o symbol

Where:
* filename.abs specifies the input TAAC-1 absolute file.

* filename.o specifies the output Sun object file.

* symbol is an optional argument used when you are linking multiple
.abs files into a host program.

taabs2o produces an object file that contains the TAAC-1 code as if it
were an array of bytes. If you specify a symbol, this array is named
"<symbol>data." You can then use this symbol as an argument to
ta_runb(), a host routine which allows you to switch between multiple
TAAC-1 programs. For a detailed example of switching between
multiple TAAC-1 programs, see Appendix C of the TAAC-1 Software
Reference Manual.

If you plan to link only one TAAC-1 executable into a host program,
you can omit the third argument in your call to taabs2o. In this case,
the array is named "_ta_absdata." You can use the host routine
ta_runm() to download and execute a single TAAC-1 program.

To link a single TAAC-1 program with a host program, follow these
steps:
Given sunfile.c and taacfile.tc:

% tacc taacfile.tc
% talink taacfile.obj

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide TAABS20 Chapter 9 — Utilities 9-7

% taabs2o taacfile.abs taacfile.o
% cc -c sunfile.c
% cc -o sunfile sunfile.o taacfile.o

To load the linked-in TAAC-1 program, sunfile.c would call host
routines ta_ldm(tahandle) O ta_runm(tahandle).

sun Revision A of 15 April 1989

microsystems

9-8 Chapter 9 — Utilities TACHAN TAAC-1 User Guide

9.3. tachan, TAAC-1
Channel Selection
Tool
The utility tachan provides the means to selectively enable and disable
TAAC-1 video channels.

Command Syntax
To invoke tachan, enter:

% tachan [-01234rgbafnv]

Where:

e -0, -1, -2, -3 designate enabled channels. Entering tachan -0 -
3 enables channels 0 and 3.

* -r, -g, -b, -a provides exactly the same function as the above
options with alternate names (red, green, blue, alpha).

* -4o0r -£f enables all channels .
o -ndisables all channels (no image).

* v prints out the tachan version number and date.

If no options are specified, tachan enables all channels.

Functions Calls

ta_open () Opens communication with the
TAAC-1.

ta_set_channel_select () Enables the designated channels.

ta_close() Closes communication with the
TAAC-1.

Channel 0 is also referred to as the red channel and corresponds to
least significant image bits 0-7. Similarly, channels 1 (green), 2 (blue)
and 3 (alpha) correspond to image bits 7-15, 16-23, and 24-31,
respectively.

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide

TACLEAR Chapter 9 — Utilities 9-9

94. taclear, TAAC-1
Clear Tool

Command Syntax

The utility taclear clears one or both banks of TAAC-1 image/data
memory to a specified value.

To invoke taclear, enter:

% taclear [-abtv] [-x hexnum] [-c colorname]

Where:

* -a, -b, and -t specify bank A, bank B, or both banks to be cleared.
The default is bank A.

* -x hexnum specifies a value to write to the selected bank(s).
hexnum should be a valid hexadecimal, 24-bit integer (without the
Ox prefix), such as -x ££00f£¢.

* -c colorname specifies a color to write to the selected bank(s),
where colorname may be one of the following recognized colors:
black, red, green, yellow, blue, magenta, cyan, or white. For
example, taclear -c red would clear to red (assuming the
colormap is loaded for full color).

* -v prints out the taclear version number and date.

taclear with no arguments clears bank A to a value of zero (black).

When used with tashow, taclear verifies simple video functionality of
the TAAC-1.

sun Revision A of 15 April 1989

microsystems

9-10 Chapter 9 — Utilities TADEB TAAC-1 User Guide

9.5. tadeb, TAAC-1
Debugger

Command Syntax

User Interface

tadeb is a window-based utility used for debugging both C and
assembly language programs that run on the TAAC-1. It allows you to
load and run a TAAC-1 program, to look at memory, to set breakpoints
or single step, and to read and write memory, including register
variables. Beginning with the TAAC-1 2.3 software release, you must
use the -g option when you are linking TAAC-1 programs in order to
run the debugger. Otherwise the register dump routine is not included
in the link.

Because only one host process can effectively communicate with the
TAAC-1 at a time, tadeb cannot be used to debug a host and TAAC-1
process concurrently. In this case, the host process can be used to
initiate the TAAC-1 process, but must be stopped before the debugger
is invoked.

To invoke tadeb, type:
% tadeb [-1i] [-v]

Where:

» i starts the debugger without initializing the TAAC-1. This is
useful when the code you wish to debug has already been loaded
and started by another host program.

e -v prints out the tadeb version number and date.

Upon initiation, tadeb creates two overlapping windows as shown in the’
sample screen in Figure 9-1. The main debugger window is the larger
of the two and is used for command control and display of data. The
other smaller window on the right is the source code display window
and is used to examine code and track code listings while single-
stepping through a program.

Figure 9-2 summarizes the usage of the individual panels within each
of two major windows. The main window is broken down into a main
command panel that spans the full width at the top and eight larger
panels below, arranged in two columns of four.

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide

TADEB Chapter 9 — Utilities 9-11

These are the primary controls of the main command panel:

Quit Stops the debugger task.

Step Single-steps the TAAC-1 processor.

Cont Starts the TAAC-1 processor from the current
program counter.

Stop Stops the TAAC-1 processor.

Reset Resets the program counter and stack pointer

without changing any other variable values.

Load Loads the executable and updates the display |
' panels if a corresponding map file exists.

Update Updates the display and TAAC-1 memories
based on editing of applicable windows.

Address Expression or address of starting memory
values in panel below RD register panel.

Filename Name of TAAC-1 executable file, <name>. abs.
Processor State TAAC-1 Processor State - Normally reads
either Stopped or Running.

?? indicates that there is no register dump code
reference in the linker map file, <name> . map.

The TAAC-1’s integer ALUs, RC and RD, each contain 64 general
usage registers which are displayed in the two upper left display
panels. Below these panels on the left is the memory display panel
pointed to by the address expression defined in the top (main)
command panel.

The lower left panel displays memory contents by symbol, variable
name, expression or explicit address, as defined in the command entry
panel on the lower right. The later panel is used for entering command
lines to the debugger. Recognized commands include: help, quit,
step, cont, stop, load, update, debug <filename>, display
<expression> and undisplay <expression>. While most commands
mimic the button controls in the top command panel, display and
undisplay are unique and are used to add and remove memory

sun Revision A of 15 April 1989

microsystems

9-12 Chapter 9 — Utilities TADEB

TAAC-1 User Guide

locations whose contents are displayed in the lower left panel.
Expressions can consist of global symbols referenced in the

Sample tadeb Window

Figure 9-1

lﬁmtl lStEp] (Cont) I§topl IResetI (Coad) (Urdate) STOPPED Ey1gname: taactutor2.abs

Address: B
>

2 =taactutor ._Coge+bx
RA=8x00022988
RB=8x000820008
OP_OF_STACK
BOTTOM_OF_STACK

9x812893FA R 1= Bx03266834
Ox0@BBO3F3F R 3= BxB1FDF43A
-/ R 4= Bx4E7FFCBB R 5= Bx4C408880
R 6= 9x4BBDOGBB R 7= BxB0BB0BBY
)R 8= @OxFFDCBB4B R 8= Bx7FFFFFFF
“:|R18= Bx7FFFFFFF R11= Bx7FFFFFFF

R12= BxFFFFBO28 R13= BxFFFFBE@0
; BxFFFFFF18 R15= Bx7FFFFFFF

ML-BxBBBBBBBB
BR=-8xBBFF80800
LU=-8x01886848
LT=0x08088800
LR=8x7D7F7DBE

BXBBE35B4F R 1= BxBBEBCA3F
8x009368F8 R 3= 9x08BB81B7
R 4= BxBBE7494F R 5= BxFFFFaCes
R b= @xB88@5365 R 7= BxBBBOFFB8
R 8= @x000000@8 R 9= BxBBBAB725
R18= BxBB6AB728 R11= Bx08B86A6724

R12= BxFFFFFF35 R13= Bx380008968
= 0x00808088 R15« Bx38800966

x1=@ 7FFFFFFF
0x20x 7FFFFFFF

KEY _TO SYMBOLS

Program Counter

Counter A

Counter B

Multiplier output-high
Multiplier output -Low
Barrel Shifter Input
Lookup Table Output -PROM
Lookup Table OQutput -RAM
Lookup Table Input

Data Read Register

Data Write Register
Address Counter Register
AC Readback Register

Al Register

AM Register

MO Register

F Bus Register

Barrel Shifter Count

8x3=Bx FFFFFFFF
@x4=Bx 7FFFFFFF

@x6=Bx FFFFFFFF
@x7=Bx 7FFFFFFF
8xB=@x 7FFFFFFF

v

Cunnand:.

34 muriteat

35 CC6:

37 CCB:

Ox5=8x 7FFFFFFF WEBY BBIVPBPE YAy 100828 0B PBbBLY o

38 b_bs e_ebdw bs srl,8x0

Bx9081 0BONOBAR BEBRVREf BB2afffa 1f898888 Bfbd3cdd fffff3ff 41d4d7f3

31 a_df rd_and rd_rabus rd_fyout rd_b#6@ rd_cf#B1 @xfffff3ff

8x0002 0©0BANGO8 0ABAREET @P2afffb 110EPAES 1103440 PBEPEBOE 41cOd7f3
a_df d_rdam rd_or rd_rabus rd_b#61 9x808

00000000 000GERGT BB2affff 1fBBOCNOA 1fDOOBBA DBOOPEB8 43cBd7f3
a_df d_edai e_sa

8x0884 0P2EPEBD BAPOEBOT Blaaffff 1fROEQOG 17PPEERD BAEBEEBE 41ddd7ef

36 ; while(ioflag == 0);

SUun

microsystems

Revision A of 15 April 1989

B8coefea
20coofes
BBcBOfE0
88cBB 108

TAAC-1 User Guide TADEB Chapter 9 — Utilities 9-13

Figure 9-2 tadeb Window Layout

Main Command Panel
RC Registers Sequencer Data
(0-63)
Code CommandPanel
RD Registers Processor, Data
(0-63) and Control
Registers Source Code Window
Memory Displayed Breakpoints
by Address
Memory Displayed
by Symbol and Command Entry

Expressions

executable’s map file and/or numeric expressions and operators (the
debugger must be able to resolve any expression into a memory
address). The help command pulls up a window which summarizes the
available commands. To remove this window, select the Done button.

The top right panel of the main window displays sequencer data such
as the current program counter and the internal sequencer counters RA
and RB.

tadeb displays stack information between Top_or sTack and
BoTTOM_OF_STACK. Currently, all stack values are displayed as
program addresses, expressed as offsets from the start of a code
segment.

Major processor data and control registers are displayed in the panel
below the sequencer information, while breakpoints can be defined in
the remaining panel.

The separate and distinct source code window can be used to look at
program listing files and trace code execution as the processor is
single-stepped. This window also provides a convenient method of
entering breakpoints by highlighting the instruction and using the STOP
AT control to include a breakpoint.

Usage Notes
The following sections describe the steps involved in using the
debugger.
sun Revision A of 15 April 1989

microsystems

9-14 Chapter 9 — Uitilities TADEB TAAC-1 User Guide

Loading a Program
1. Run tadeb by entering:

% tadeb

N

Move the cursor to the Filename prompt. Enter the program
name (<name>.abs) or use the right mouse button to pull down
a menu of all the executable files in the current directory. Once
the name is entered by either means, press the Load button.

3. tadeb loads the file, but the PC will be held at 0 and the screen
will not be updated until you select Step, Cont (continue), or
Reset.

4. tadeb uses the link map generated by talink for its addresses,
so the .map file must be current and in the same directory as
the program. If the map file cannot be found the top four panels
will not be initialized after the load and the processor status
display may show question marks.

5. If the .abs file you selected was not linked with the -g option,
tadeb will display an error message. You must relink the
program before proceeding.

Debugging a Program

Without Loading It
If you have a program that is downloaded from the host and uses input
from the host, it is possible to debug it without loading it inside tadeb.

1. Run and exit the host program (the host program and tadeb
cannot operate concurrently).

2. Runtadeb-i. Enter the filename but select Update instead of
Load. This allows tadeb to read the link map but will not load
the program. Select Stop to stop the processor. You can then
look at memory or single-step the process.

3. To rerun the program without loading it, select Reset, which
halts the processor, resets the program counter to zero and
resets the sequencer stack. Reset does not change any
program variables.

4. You may want to change either the host code, the TAAC-1
code, or both, so that the TAAC-1 program waits for a flag to be
set before proceeding. Then you can set the flag by writing to
memory inside tadeb.

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide

TADEB Chapter 9 — Utilities 9-15

Running a Program
Without Setting
Breakpoints

Setting a Breakpoint and
Running a Program

. Run tadeb and load the TAAC-1 program.

. Select Cont (continue). The processor status message in the

top control panel will change from Stopped to Running.

. To stop the program, select Stop. A TAAC-1 C program,

when it is finished, hangs in a one-instruction loop.

Enter the breakpoint address in the breakpoint window. The

address can be an absolute address, a global symbol defined in

the link map, or an expression using symbols and constants
(note that the C compiler prefaces subroutine names with an
underscore). You can enter multiple breakpoints, separated by
one or more spaces or lines. The breakpoint window can be
edited, scrolled, and saved to a file. An easier way to set
breakpoints is to highlight any portion of a line of code in the
source code window and press the Stop At button. The
breakpoint address will appear in the breakpoint window.
Examples of valid breakpoints:

0x47
_main
_main+0x1f

. Select Cont. When the breakpoint is reached, tadeb highlights

the correct breakpoint, unless the breakpoint falls on an
instruction containing a branch. The processor status will now
indicate Stopped in the top command panel. The instruction at
the breakpoint will have been executed, and the program
counter (MPC) will point to the next instruction to be executed
after the breakpoint. If the breakpoint is within a code segment
that is defined with an assembler listing file in the operating
directory, the source code window will display the listing file
and highlight the breakpoint instruction.

. Breakpoints are not allowed on instructions containing floating

point operations, because the floating point processor must be
clocked during the cycle immediately preceding its operation.
Stopping for a breakpoint would interfere with this sequence.
The debugger generate an error for these breakpoints.

sun Revision A of 15 April 1989

microsystems

9-16 Chapter 9 — Utilities

TADEB TAAC-1 User Guide

Single-Stepping

Looking at Memory

Function Arguments and
Automatic Variables

. You can specify a count with a breakpoint, and tadeb will stop

only when it has reached the breakpoint ‘‘count’’ times. For
example, to stop at the fifth time the program calls subroutine

subx, enter:

_subx#5

. Select Step. This causes a breakpoint at each instruction.

Instructions that disallow interrupts, including floating point
instructions, are stepped over.

. Enter the address at the Address: prompt in the command panel

at the top of the main window. You can enter:
¢ The name of a global symbol
* An absolute address

* An expression using global symbols and constants

Entering an invalid address causes a message window to
appear. If you press the right mouse button near the Address
entry line, a pull-down menu of recent addresses will appear,
simplifying the process of changing and rechecking old
addresses.

. The first 30 words of memory starting at the given address will

be displayed in the lower left window. The words are scrollable
and their values can be modified with standard window editor
techniques. Selecting Cont, Step, or Update rewrites any
variables that might have been changed.

. Pressing the right mouse button inside the memory window

allows you to select a different radix for the display.

. At the entrance to a function, the compiler subtracts the

framesize (the size needed to hold all the automatic variables,
including locations needed to save any registers) from RD62,
and then jumps to "_S.<subroutine-name>". To look at an
automatic variable within a subroutine, use the address

RD62 + stkloc offset [+ pushsize]

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide TADEB Chapter 9 — Utilities 9-17

2. To look at an argument, use the address

RD62 + framesize + argloc offset [+ pushsize]

pushsize applies only if the compiler has begun to push
arguments onto the stack, in preparation for calling another
subroutine. For each argument the compiler pushes onto the
stack, it subtracts the size of that argument from the stack
pointer.

To understand how to read local variables, it helps to look at the
assembly code for a function that is reading or writing a
variable. The following example has comments inserted:

/* the C code */
sub(a,b,c)
int a,b,c:
{
int w,Xx,y,2;"
y = b;
}

/* the assembly language source */
;sub(a,b,c)
;int a,b,c;

.global sub,_S.sub

_S.sub: ; start of sub

IR

; a at argloc 0 (0x0) size 1 argloc contains the offsets for function
; b at argloc 1 (0xl) size 1 arguments

; ¢ at argloc 2 (0x2) size 1

H int w,x,y,2z;)

; w at stkloc 0 (0x0) size 1 stkloc contains the offsets for automatic
; x at stkloc 1 (0x1l) size 1 variables

; y at stkloc 2 (0x2) size 1

; z at stkloc 3 (0x3) size 1

; y = b;

;first reading b, located at SP(in RD62) + framesize(=4) + arglog offset (=1)
a_df d_rdai rd_add rd_rabus rd b#62 CC6+0x1
mreadai\
;now writing y, located at SP(RD62) + stkloc offset (=2)
d_rdai rd addi rd_a#2 rd_b#62
e _drdw
mwriteai
;this is the subroutine exit - it restores any registers it needs to
;and then adds the framesize back into the stack pointer
CC7:

Sun Revision A of 15 April 1989

microsystems

9-18 Chap[er 9 —— Utilities TADEB TAAC-1 User Guide

d_rdai rd_addi rd fyout rd_a#4 rd_b#62 rd c#62\
retn cctrue
;this is the subroutine entrance -~ it subtracts the framesize from the
;stack pointer, saves any registers it needs to, and jumps to _S.sub
sub:

d rdai rd_subi rd_fyout rd a#4 rd b#62 rd c#62\
f_sd jufb cctrue _S.sub

CC6=4 ;this is the framesize = size of all the automatic variables
;1

Using the Display Window

1. In the command line of the lower right window, enter a global
variable name or an expression which is translatable into a valid
memory address. If the expression is illegal, the command line
will remain static awaiting correction. tadeb can handle
indirection operators for pointer variables. Examples of valid
command line syntax:

diéplay _ioflag
display _array+0x10
display 0x30000007
display * p

2. To select an alternate radix for a variable, select the variable
with the left mouse button and then press the right mouse
button for the radix pull-down menu. In this window, the radix
can be individually selected for a variable, as opposed to the
other windows, where the radix applies to all variables in the
window.

3. Memory values displayed cannot be edited or updated from this
window.

4. To remove entries, use the undisplay <expression> command.

Exiting tadeb

Select Quit.

General Information
* You can change the radix of the display in any window. Select the

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide TADEB Chapter 9 — Uiilities 9-19

right mouse button for the radix pull-down menu. The radix is
changed on a per-window basis except in the lower left memory
display window, which allows radix customizing of each entry.

 Double precision can be selected in either the memory window or
the display window. In the display window, you can specify that a
particular variable is double precision and it will be displayed in that
mode. In the memory window, selecting the double precision radix
means that, starting with the first address shown in that window,
every two words will be considered to contain a double precision
value, and will be displayed that way. Double precision values are
displayed with a leading ‘‘D"’ to distinguish them from single-
precision values. Note that the double precision radix cannot be
selected for any other windows.

* All the windows are scrollable except the lower-right command line
panel.

» All 64 registers are displayed for each ALU. RD62 contains the C
stack pointer. These registers can be modified using standard
textedit techniques. Selecting Step, Cont, or Update updates the
register.

* The MPC (program counter) shows the address of the next
instruction to be executed. The address shown is relative to the
start of its code segment.

* All stack values between TOP_OF STACK and BOTTOM OF STACK are
currently expressed as offsets from the start of a code segment.
However, the stack can contain other kinds of values, such as loop
counts, and so this display can be misleading.

sSsun Revision A of 15 April 1989

microsystems

9-20 Chapter 9 — Ultilities

TAINIT TAAC-1 User Guide

9.6. tainit, TAAC-1
Initialization Tool

Function Calls

®

The utility tainit provides a simple and quick means of initializing the

TAAC-1.

To invoke tainit, enter:

% tainit [-vstm]

Where:

* v prints out the tainit version number and date. It performs no
other functions.

* -s,-t,-m set Sun, TAAC-1, or mixed video, respectively. Note
that once you are in TAAC-1 video, you are ‘‘blind’’ with respect
to Sun video, so do not move the mouse or you will have difficulty
returning to Sun or mixed video with tainit or tashow.

* tainit without options initializes the TAAC-1 and sets the video
mode according to the configuration file.

ta_open()

ta_init()

ta_set_video()

ta_close()

sSun

microsystems

Opens communication with the TAAC-1 and verifies
that the TAAC-1 is accessible.

Initializes the state of the TAAC-1, including default
video and colormaps. Sets video mode according to
configuration file. In single-monitor mode, the default
video is Sun video and sync. In dual-monitor mode,
the default video and sync formats are as defined in
$TAACl/hardware/taconfig.<hostname>. See the
ta_init () host library entry for more details.

Sets the video and sync modes.

Closes communication with the TAAC-1.

Revision A of 15 April 1989

TAAC-1 User Guide

TALOAD Chapter 9 — Utilities 921

9.7. taload, Image
File Loader

IFF Image File Format

Format

taload writes an image file (in IFF format) to TAAC-1 data/image
memory. To invoke taload:

% taload [-f imagefile] [-x xoffset] [-y yoffset]

Where:

* imagefile is the name of an image file stored in IFF format
(described below). If you do not specify a filename, taload uses
standard input.

* <xoffset and yoffset specify a starting address, in TAAC-1
data/image memory, to which the image will be written; the default
is (0, 0). '

The IFF Image File Format is a flexible and extensible format for
associating useful information with a data set. The approach, utilities,
and libraries are not limited to the storage of images, although several
conventions have been established for two-dimensional multi-band
data.

The basic format of an IFF file is an ASCII header terminated by
formfeed and newline characters, followed by the image data. The
header begins with a "magic number" (the string "ncaa") identifying the
file as an IFF file. This magic number may be placed into /etc/magic for
use with the utility file(1). A AL (Control/L) terminates the header.
This character allows you to examine the header using more(1).

The remainder of the header consists of keyword and value pairs. The
syntax of a pair is a keyword, an equals sign (=), the value string, and
a terminating semicolon (;). Some examples:

bands=4;
size=512 512;
title=Famous Mandrill Picture;

Keywords should not contain embedded blanks, equals signs (=),
backslashes (V), or semicolons (;). Semicolons in value strings must
be represented by a backslash followed by a semicolon (\;). A
backslash character is represented by two consecutive backslashes

A\

sun Revision A of 15 April 1989

microsystems

9-22 Chapter 9 — Utilities TALOAD TAAC-1 User Guide

Image Keywords

A set of five keywords has been chosen to represent the minimum
amount of data that must accompany an image. These keywords are:

rank dimensionality of the data (2 for images, 3 for volumes, etc.)

size number of samples along each dimension. For 2D images,
size refers to X and Y size, in pixels.

bands number of bands in the image (1 for monochrome, 3 for RGB,
etc.)

bits number of bits for each band

format format of the image data. The IFF format specifies how the
image data is stored in the format keyword. Currently-
defined formats are:

"base" - a conventional format used in some of the image
handling utilities. The base format stores pixels in raster
order. All bands of a pixel are stored together--band
interleaved as opposed to band sequential. Each pixel band
is stored in an integral number of bytes; no bit packing is
done. A typical TAAC-1 (32-bit) image file is stored in
base format as AGBRABGR...

"Block Pseudo" - the format used for a2bitmovie frames.
This format has two additional keywords: colormapsize
and colormap. colormapsize is normally 256. colormap
signifies the presence of an ASCII colormap in the image
data file. For more information about a2bitmovie, refer to
the Demo chapter of the TAAC-1 Software Reference
Manual. :

Keyword values that contain more than one piece of information, such
as for size and bits, are represented by separating the parameters with
white space. The header for a 512x512 24-bit color image might look
like this:

ncaa
rank=2;
size=512 512;
bands=3;
bits=8 8 8;
format=base;
L

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide

TALOAD Chapter 9 — Uitilities 9-23

IFF Utilities

Additional information may be included in the header simply by adding
more keyword and value pairs. Binary data should be represented in
hexadecimal.

There are a few utilities that deal with any type of IFF file, not specific
to images. These allow the creation of IFF files, modification of
keywords, and the removal of the IFF header.

In general, these utilities read IFF files from standard input and write
IFF files to standard output, allowing several operations to be piped.
The use of the -f option allows input from a file.

IFF files compressed with compress(1) can be used as input provided
they end in the conventional .Z extension.

There is no special utility to list the header of an IFF file, since the
formfeed header termination allows examination with more(1).

% iffcreate [-f rawfile] [-h headerfile] [key=val]

iffcreate prepends an image file header to standard input or the file
rawfile, writing the result to standard output. Keyword/value pairs may
be read in from an existing image file as well as added on the command
line. The following command creates an IFF file from a 32-bit 512x512
data file:

% iffcreate -f myfile "rank=2" "size=512 512" "bands=4"
"bits=8 8 8 8" "format=base" > myfile.iff

Alternatively, you can create a file using a header from another IFF file
with the same characteristics:

% iffcreate -f myfile -h $TAACl/demo/data/images/button.iff
> myfile.iff

% iffreorder [-f imagefile] [-b bandnumber]

iffreorder reorganizes the pixels of an image file taken from standard
input or the file imagefile. It may be used to extract a band or bands
and reorder the components. Bands are numbered from O to n-1, in the
order that they are stored in the file. For TAAC-1 images, the ordering
is typically ABGR, so A is band 0, B is band 1, G is band 2, and R is

sun Revision A of 15 April 1989

microsystems

9-24 Chapter 9 — Utilities TALOAD TAAC-1 User Guide

band 3. Any number of pairs of -b options and band numbers may be
specified. The following command takes a 32-bit input IFF file with
colors ordered ABGR and produces a 24-bit output file with colors
ordered RGB:

$ iffreorder -f myfile abgr.iff -b 3 -b 2 -b 1
> myfile_rgb.iff

The following command extracts only the green component of a 32-bit
input IFF file with colors ordered ABGR:

% iffreorder -f myfile abgr.iff -b 2 >myfile green.iff

% iffgetkey [-f imagefile] [keyword]

iffgetkey returns values of keywords specified on the command line
from an image file taken from standard input or the file imagefile.
Keyword values are separated by newlines. The following command
returns the contents of the bands and bits keywords:

% iffgetkey -f myfile.iff bands bits

% iffsetkey [-f imagefile] [key=val]

iffsetkey changes/adds keyword/value pairs to the image file taken
from standard input or the file imagefile, writing the result to standard
output. If the key value contains any white space, the entire
keyword/value pair must be enclosed in double quotation marks. The
following command changes the title keyword of an image header:

% iffsetkey -f myfile.iff "title=Ray-traced Sun Logo" >
titled image.iff

% iffaddkey [—-f imagefile] [key=val]

iffaddkey adds keyword/value pairs to the image file taken from
standard input or the file imagefile, writing the result to standard
output. If the key value contains any white space, the entire
keyword/value pair must be enclosed in double quotation marks.

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide

TALOAD

Chapter 9 — Utilities 9-25

Other TAAC-1 IFF
Utilities

% iffstrip [-f imagefile]

iffstrip removes the header from an image file taken from standard
input or the file imagefile, writing the result to standard output. The
following command removes the IFF header from a file:

% iffstrip -f myfile.iff > orig_file

Besides taload and taread, there are additional utilities that deal
specifically with TAAC-1 images. The most common types of TAAC-1
images are eight-bit monochrome and 32-bit color. Examples of TAAC-

1 image headers:

Monochrome
ncaa

rank=2;
size=512 512;
bands=1;
bits=8;
format=base;
“L

XXXX...

32-bit Color
ncaa

rank=2;
size=512 512;
bands=4;
bits=8 8 8 8;
format=base;
“L
ABGRABGR. ..

$ iffcutout [-f imagefile] [-x xoffset] [-y yoffset]

[-X xsize] [-Y ysize]

This utility crops an image taken from standard input or the file
imagefile, writing the result in the IFF format to standard output.

$ ras2iff [-O0 onval] [-o offval]

This utility reads a binary Sun rasterfile from standard input and writes
a color image in the IFF format to standard output. It handles 1-, 8-,
and 24-bit rasterfiles. 1-bit rasterfiles are treated specially by ras2iff,
by converting them to 32-bit color IFF files for compositing purposes.

sun

microsystems

Revision A of 15 April 1989

9-26 Chapter 9 — Ultilities TALOAD TAAC-1 User Guide

The colors to represent binary on and off may be specified using the
switches. The defaults are offval=0x00000000 (black) and
onval=0xffOOffff (yellow with alpha).

% iffcolor

This utility reads a single-band, 8-bit IFF file from standard input and
writes a 24-bit color IFF file to standard output, passing the data
through the header colormap, if present.

See Also
taread, read rectangular region of TAAC-1 data/image memory.

The Hostlib-Image File Functions chapter of the TAAC-1 Software
Reference Manual.

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide

TAMAKEDEF Chapter 9 — Utilities 9-27

9.8. tamakedef,
Include File
Generator

Command Syntax

tamakedef generates an include file for a host program containing the
addresses of all global symbols in a TAAC-1 program. It reads the

.map file generated by the TAAC-1 linker talink, extracts the names
and addresses of functions and global variables, and produces an

include file containing each global symbol name, prefixed by Tc_, and its
address in TAAC-1 memory. For example, if the .map file contained a
global symbol:

_ioflag 0x30000000

the include file generated by tamakedef would contain the line:

#define TC_ioflag 0x30000000

This include file allows host programs to read or write TAAC-1 global
variables using the same symbolic names as in the TAAC-1 programs,
without worrying about where these variables are located in TAAC-1
memory. If you use tamakedef, structure your Makefile dependencies
so that the host program depends on the include file, which depends in
turn on the .map file from the linker.

To invoke tamakedef, enter:
% tamakedef map_file include_file [-cd]

Where:

* map_file is the name of the .map file produced by the TAAC-1
linker talink.

* include_file is the name of the host include file to be generated
by tamakedef.

* -c writes to the output file only if it will change. This option is
useful for Makefile dependencies; if you re-link your TAAC-1
program but none of the global addresses has changed, this option
keeps your host program from being re-compiled unnecessarily.

* -dextracts only data addresses from the link map. Function
addresses are ignored.

sun Revision A of 15 April 1989

microsystems

9-28 Chapter 9 — Utilities

TAMON TAAC-1 User Guide

9.9. tamon, TAAC-1
Monitor

Commands

Reading

Writing

Video

Setting Slave Mode
Register (SMR) Bits

tamon is a low-level tool that allows direct access to TAAC-1

memory. You can also use tamon to initialize TAAC-1 registers, to
load and run programs, and to perform certain diagnostic functions. To
invoke the monitor, enter:

% tamon

Type H or 2 to display the tamon help menu. Specify commands in

upper or lower case.

R Reads from the current address.

RF Reads a floating point value.

RN Reads from the next address.

RP Reads from the previous address.

w Writes to the current address.

WN Writes to the next address.

WP Writes to the previous address.

WR Writes, then immediately reads.

w2V Writes two values to the current address.
W2A Writes the current value to two addresses.
VIDL Set the sync up.

VM Set the video mode.

BREAK/NOBREAK Controls the break bit.

STEP/NOSTEP Controls the step bit.
GO/STOP Controls the clock enable bit.
ZERO/NOZERO Controls the zero bit.
RESET/NORESET Controls the reset bit.
JAM/NOJAM Controls the jam bit.

MASTER/NOMASTER Controls the master bit.

1D/2D

Controls the addressing mode bit.

VRAM/MCR/SR/REG Controls the memory type bits.

INITSMR

sun

microsystems

Writes O to the slave mode register.

Revision A of 15 April 1989

TAAC-1 User Guide

TAMON Chapter 9 — Ultilities 9-29

Setting Monitor Attributes

Memory Checks

Miscellaneous

Useful Functions

A

C

QUIET

\%
VERBOSE

DP

DPMC

UA

Hor?

ACI

Sets the current address.

Sets the repeat count.

Prints small set of informational messages.
Sets the value to write.

Prints all informational messages.

Does pattern checking on a range of memory.

Does pattern checking specifically for program
(instruction) memory.

Does a unique address check on a range of memory.

Goes to an instruction address.
Prints this help message.

Loads an assembly program.
Provides status information.

Loads an assembly code instruction.
Initializes the TAAC-1.

1. VM - Sets the Video Mode. You can select :
* TAAC-1 video (the TAAC-1 takes over the entire screen).

+ Sun video (the Sun takes over the entire screen).
* Mixed video (TAAC-1 video in a Sun window).

2. INIT - Initializes TAAC-1 Registers. It sets the video mode
(VM) to Sun video.

3. SR, VRAM, REG, MCR - Select the TAAC-1 memory type for
reading and writing. Only one memory type can be accessed at a
time. Choices are:

SR
VRAM
REG
MCR

Scratchpad memory.
Data/image memory.
Video registers.
Program memory.

4. A - Sets the Current Address in the selected memory type. Use an
address relative to the start of that memory type. For example,
SR memory begins at 0x30000000. Therefore, the first SR address
would be zero.

sun

microsystems

Revision A of 15 April 1989

9-30 Chapter 9 — Ultilities TAMON TAAC-1 User Guide

+ Toread memory, type R, which returns a hex value, or RF, which
returns a floating point value. RN reads the next address; RP reads
the previous address. RN and RP return hex values only.

+ To write to memory:

Type V to enter the value to be written.

Type W to write the value.

Type WN to write the same value to the next address;
Type WP to write to the previous address.

5. S - Displays Status Information. Status information includes the
current address, value, and SMR bit settings.

6. L - Loads a TAAC-I Program. The sequence to use for loading a
TAAC-1 program is:

ZERO Holds the processor at zero. If the processor is
running (the GO bit is set), it will execute instruction
0 repeatedly.

GO If the processor is stopped, type GO to start it.

L Loads the program.

NOZERO Begins program execution.

7. VIDL - Initializes the Sync Registers. In response to the
£ilename prompt, enter the full pathname of the appropriate sync
file. Refer to TAAC-I Application Accelerator - Software
Installation Guide (800-2441-xx) for information about sync
files. INIT also initializes the sync registers, so if you call INIT, -
you do not need to use VIDL.

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide

TAPROF Chapter 9 — Utilities

9-31

9.10. taprof, TAAC-1
Profiler

Command Syntax

User Interface

taprof analyzes TAAC-1 program execution, to help you determine
where a program is spending most of its time, so that those parts of the

program can be optimized. The profiler provides information concerning

the percentage of time spent in a given subroutine or over an arbitrary
range of addresses. taprof can be run only on systems that support
SunView.

To invoke the profiler, enter
% taprof [-c =-s =d]

Where:

* —c specifies concurrent mode (the default), in which the profiler runs

concurrently with a host program/TAAC-1 program. In this mode,
data is collected at a rate of 50-100 samples per second. The
host/TAAC-1 program is invoked separately, either before or after
invoking taprof. '

» -s specifies standalone mode, in which taprof loads and runs a

TAAC-1 program without a host application program. In this mode,

the sample rate is 400,000-500,000 samples per second.
Standalone mode produces an accurate profile more quickly than
concurrent mode; however, this mode requires that the TAAC-1

program run by itself, which may require some rewriting. Currently,

standalone mode sets Sun-only video for single-monitor
configurations; therefore, you will not be able to see the program
running in a tatool window while the profiler is executing.

» -d specifies debug mode, which can be used to test the user

interface. This mode does not run or profile a TAAC-1 program; it

can be invoked on workstations without a TAAC-1.

When invoked, taprof creates a Sunview window, as shown in the
figure on the next page. The top half of the window displays profiling
information; the bottom half, a listing file, if one is available.

sun Revision A of 15 April 1989

microsystems

9-32 Chapter 9 — Utilities TAPROF TAAC-1 User Guide

Figure 9-3 taprof Window

(DSl I S TR SN b SROTY WAL ST O L LI B EO S

P

A A

1ouw high
(Z00M) (UNZOOM) (RESET) Integration: 13% Routine:t_objnh (17%)
Address:objnh_code+8x8324 Listing filename: objnh.1st

f_sd ju?g ccltz o223
d_rdai rd_incr rd_fyout rd_a#1@ rd_c#18\

b_bs rc_fbbus rc_c#12 bs_sr1,0x8
sqwait mreadai\

c_ec e_dr rc_fcbus rc_c#14

cc224:
: vixlist[1] = *(vtxptr + *vtxndx);
rc_subs rc_a#12 rc_b#14 ccrc
f_sd jufb nccltz CC226\
b_rcmy rc_b#12
a_dfmx 8x3\

Controls

Filename Enter the full pathname of the TAAC-1 program
being profiled. Pressing the right mouse button
in this field causes a list of . abs files to be
displayed. Move the mouse to highlight the file
you wish to select and release the mouse
button. If taprof is executing in standalone
mode, pressing the Profile button causes taprof
to download this file and begin execution. In
either standalone or concurrent mode, the
profiler looks in the specified directory for the
.map file corresponding to the TAAC-1 absolute
filename. It uses the .map file information to
display subroutine names and listing files.

Sample time Enter the number of seconds that you wish the
profiler to gather samples. In standalone mode,

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide TAPROF Chapter 9 — Uitilities 9-33

a Sun 3/160 gathers approximately 400,000
samples per second, and a 3/260 and 4/260
gather approximately 500,000 samples per

second.

Profile When you press this button, the profiler loads
and runs the TAAC-1 file specified in Filename
(in standalone mode) and begins gathering
samples. When the sample time has elapsed, it
displays the profiling information, including a
graph of vertical lines representing relative
frequency spent at each instruction address
within the region of interest (see Low and High
Pointers). If the region of interest is large, each
line on the graph will represent more than one
address. For greater precision, use the Zoom
button to decrease the address range.

Scale Number Although not generally useful, the scale number
is displayed in the upper left comer of the graph.
It indicates the percentage of time spent in the
tallest bar visible in the display.

Low and High

Pointers The low and high pointers define the current
region of interest to be within the address range
specified. To move the low pointer, position the
cursor (within the profile graph display) at the
appropriate point and press the left mouse
button. To move the high pointer, position the
cursor and press the middle mouse button.

Integration Integration displays the percentage of time
spent within the current region of interest.

Routine The routine display shows the name of the
routine to which the cursor is currently pointing
(based on the .map file information), and the
percentage of time spent in that routine.

Zoom Button When you press the Zoom button, the region of
interest selected by the Low and High Pointers
becomes the complete viewed area. This allows
you to select progressively narrower regions of
interest.

sun Revision A of 15 April 1989

microsystems

9-34 Chapter 9 — Uitilities

TAPROF

TAAC-1 User Guide

Unzoom Button

Reset Button

Address

Minimum and
Maximum Address

Listing Filename

Listing File Window

Menu

sSun

microsystems

The Unzoom button undoes the effect of the
previous Zoom. Zoom uses a stack which
allows multiple zooming and unzooming.

The Reset button returns the display to the
original full range.

The Address display shows the address
currently pointed to by the cursor, in terms of a
code segment name and an offset from the start
of that code segment. When the region of
interest is large, several lines of code will be
mapped to the same vertical line. In that case,
the offset will be to the lowest address
represented.

At the base of the profile graph, taprof displays
the low and high boundaries (as absolute
addresses) of the area being displayed.

Displays the name of the file displayed in the
listing file window.

If taprof finds the appropriate listing file, it

_displays the listing file for the address pointed

to by the Low Pointer, and highlights the listing
file address for that instruction. Again, if the
region of interest is large, this will be the lowest
of a sequence of addresses. If there is no listing
file corresponding to a selected address, the
Listing File Window is blank. Note that, unlike
the Routine and Address displays, the Listing
File Window changes only when you change the
Low Pointer, not every time you move the cursor.

The Zoom, Unzoom and Reset functions are

also available through a menu selection. To see
the menu, press the right mouse button.

Revision A of 15 April 1989

TAAC-1 User Guide

TAREAD Chapter 9 — Utilities 9-35

9.11. taread, read
TAAC-1
Data/Image
Memory

See Also

taread writes a 32-bit image file (in IFF format) from TAAC-1
data/image memory to standard output. To invoke taread:

% taread [-x xoffset] [~y voffset] [-X xsize] [-Y ysize]

Where:

* xoffset and yoffset specify a starting address, in TAAC-1
data/image memory, from which the image will be read; the default
is (0, 0).

e xsize and ysize specify the image size in pixels. The default is
(512, 512).

You can pipe the output of taread through the utility iffreorder, to
extract and/or reorder the bands of an image. For example, to produce
an 8-bit image file from the red channel of TAAC-1 memory (using
default starting address and size):

% taread | iffreorder -b 3 > myfile red.iff

To extract a 24-bit image (BGR), again using the default starting
address and size:

% taread | iffreorder -b 1 -b 2 -b 3 > myfile bgr.iff
taload, load rectangular region of TAAC-1 data/image memory, for

descriptions of IFF format, the taload utility, and associated IFF
utilities.

sun Revision A of 15 April 1989

microsystems

9-36 Chapter 9 — Ultilities TARUN TAAC-1 User Guide

9.12. tarun, TAAC-1
Program
Execution Tool

Command Syntax

Function Calls

The utility tarun provides a simple means of loading and executing a
program on the TAAC-1.

To invoke tarun, enter:
% tarun [-v] filename.abs

e v prints out the tarun version number and date.

+ filename.abs is an absolute load file produced by the TAAC-1
linker talink.

Note that tarun does not initialize the TAAC-1. To initialize before
running tarun, Use tainit.

ta_open () Opens communication with the TAAC-1.
ta_run() Stops the TAAC-1 processor, loads the . abs file,

resets the program counter and stack pointer, and
begins execution.

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide TASHOW Chapter 9 — Ultilities 9-37

9.13. tashow, TAAC-1
Show Tool

The utility tashow is used to switch from Sun to TAAC-1 video.
tashow is useful in single-monitor configurations for quick looks at
TAAC-1 data/image memory. In addition, tashow permits selection of
TAAC-1 video from data/image memory bank A (0<=x<=1023,
0<=y<=1023), bank B (0<=x<=1023, 1024<=y<=2047), or from any
specified y address in TAAC-1 data/image memory.

Command Syntax
To invoke tashow, type:

% tashow [-abstmwnv2zqg] [~y yaddress]

Where:

* -aand -b specify display of the A or B banks, respectively. These
take effect in TAAC-1 video. The default is bank A.

* -t,-s, and -m specify display of TAAC-1, Sun, or mixed video,
respectively. The default is TAAC-1 video.

» -y specifies the y address of TAAC-1 video to be displayed at the
upper left corner of the Sun monitor. The value of the y address
must be between 0 and 2047 (inclusive), where 0 is the top of
TAAC-1 image memory and 1024 is the beginning of bank B.

» -wand -n specify vertical wrap and no wrap, respectively. This has
effect only if the yaddress option is invoked. If wrap is selected,
the TAAC-1 video displayed will wrap within the bank containing
the specified y address. If nowrap is specified, the display will not
wrap within a bank, but will wrap at line 2047 back to line 0.

* -v prints out the tashow version number and date.

* -Z zooms the display by a factor of two in both the x and y
directions. tashow uses the hardware zoom feature of the TAAC-
1; pixels are replicated beginning with the upper left corner of the
display (location 0, 0).

¢ -z turns off hardware zoom.

* —q turns off interactive mode. This option allows you to set up an
alias that performs one or more tashow functions and then exits
tashow.

sun Revision A of 15 April 1989

microsystems

9-38 Chapter 9 — Utilities TASHOW TAAC-1 User Guide

Interactive Commands

IMPORTANT NOTE: If you display TAAC-1 video in interactive
mode, be sure not to move the cursor from the window in which the
command was entered. If you do it will be difficult to give the
command to return to Sun or mixed video or to exit tashow.

The TAAC-1 reset button, located on the backpanel, will always
restore video for single-monitor configurations.

Entering tashow with no arguments is equivalent to specifying bank A
and TAAC-1 video.

When tashow is invoked without the —-q option, it is in an interactive
mode, accepting single key entries (each followed by Return). This
should make operation simpler when using TAAC-1 video control.
tashow recognizes these characters (organized by function):

a bank A

b bank B

y y address displayed at top of Sun monitor
s Sun video control

t TAAC-1 video

m mixed video

w vertical wrap within a bank

n no vertical wrap within a bank
Z turn on hardware zoom by two
z turn off hardware zoom

q quit

All other characters are ignored.

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide

TATOOL Chapter 9 — Utilities 9-39

9.14. tatool, TAAC-1
Tool

Command Syntax

More on the -t Option

In single-monitor configurations, the utility tatool:

» Provides a quick SunView window into TAAC-1 data/image
memory using the TAAC-1 video keying feature. This can be
useful if you want to get started with the TAAC-1 without first
developing a background in SunView.

« Provides an interactive method for video keying setup, using the
Video Editor window.

» Optionally loads and starts execution of TAAC-1 load files while
simultaneously supporting the TAAC-1 image window.

In dual-monitor configurations, tatool provides a simple method of
identifying dual-monitor operation as the default and selecting the new
video and sync formats.

tatool is a window-based utility is invoked by entering:

% tatool [filename.abs][-t] [-v]

Where:

* filename.abs is an absolute load file produced by the TAAC-1
linker, talink, which will be loaded and started on the TAAC-1.
The -t option disables TAAC-1 communications, preventing the
loading and execution of TAAC-1 load files.

* -t creates a host window for TAAC-1 images, with no TAAC-1
communication link. Since the TAAC-1 can be controlled by only a
single Unix process at a time, this option creates a viewing window
for TAAC-1 video that coexists with other Sun/TAAC-1 processes
that may not include windowing software.

e -v prints the tatool version number and date.

The -t option is used to differentiate between a tatool window that is
actively linked to the TAAC-1 and one that is not.

Without the -t option, a single area of TAAC-1 data/image memory
tracks the host window. When you move the host window, the TAAC-

sun Revision A of 15 April 1989

microgystems

9-40 Chapter 9 — Utilities TATOOL TAAC-1 User Guide

Full-screen keying mode

1 image in the window stays the same. A TAAC-1 image memory
coordinate (generally 0,0) is tied to the top left corner of the host
window. Using this mode, you can invoke the Video Editor to select
single- or dual-monitor modes, adjust video keying, change image
centering and select new video sync parameters.

With the -t option, the TAAC-1 data/image memory is fixed with
respect to the upper left corner of the screen, instead of the top left
corner of the host window. Therefore, moving the host window
displays a different part of the TAAC-1 video frame. It should be noted
that the TAAC-1 video frame is often partially blanked (or black), so
that roaming around with the tatool window may not reveal all the
contents of TAAC-1 data/image memory. You cannot invoke the
Video Editor in this mode.

Since there is absolutely no communication with the TAAC-1 when
using the -t option, TAAC-1 video control must already be in the

mixed video mode, with the keying registers properly loaded, for
TAAC-1 video to be inserted into the tatool window. If TAAC-1

video control is in external video mode or the keying registers are not
properly initialized, the window will show only the keying color defined
for the host canvas in the file $TAAC1/hardware/taconfig.<hostname>.

When you invoke tatool -t and make the tatool window iconic,
moving the cursor into the icon results in "full-screen keying" mode, in
which TAAC-1 video appears over the entire screen. When you move
the cursor out of the icon space, normal Sun video returns. Points to
note about full-screen keying mode:

* When you use the right mouse button to select the frame menu from,
the tatool icon, the TAAC-1 video will appear to "bleed through"
the Sun video. This is an effect of the implementation and not a
hardware problem. '

» To use this full-screen keying mode on systems equipped with a
10-bit frame buffer, you must start SunView with
the -8bit_color_only option. Otherwise, the TAAC-1 video will
not be visible where the overlay colors are being used. For more
information about the -8bit_color_only option, see the SunView
man page.)

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide

TATOOL 9-41

X windows version

The Video Editor

The directory $TAAC1/demo/src/txtool contains source code and a
Makefile for an X-windows version of tatool. txtool is a preliminary
version only; it does not understand all the command line arguments
that most X applications understand. However, it incorporates most of
the features of tatool, with these exceptions:

* you must use the right mouse button and the pull-down menu,
rather than the Escape key, to invoke the Video Editor;

+ the Video Editor does not allow you to switch between single- and
dual-monitor configurations. You must edit the appropriate sync
file, instead.

The Makefile for txtool requires the X libraries to be visible to your .
machine. "Make install" builds txtool and installs it in the directory
$TAAC1/demo/bin. To invoke txtool:

1. Log in; do not start up the Suntools environment.
2. Enter

% xinit; kdb_mode -a
3. When the X console window starts up, enter

% txtool [-geometry geometry specs]

txtool understands standard X-window geometry specifications.
If you omit the -geomet ry option, use the mouse buttons to place
and size the window..

If tatool is initiated without the -t option, the Video Editor window
can be used to set up video keying in single-monitor configurations. In
dual-monitor configurations, the Video Editor permits the : witch to
dual-monitor operation and lets you enter the sync source and video
formats of your second monitor.

To call up the Video Editor, execute tatool, position the cursor within
the tatool window display area, and press the <Escape> (Esc) key.
The windows shown in the following figure will appear on screen:

sun Revision A of 15 April 1989

microsystems

9-42 TATOOL TAAC-1 User Guide

Figure 9-4 tatool Window and the Video Editor

i
Color CRed POSITION

Sun value [101] © NG] 255 ()
Keyvalue [123] o NN 1255 ()
aperture [156] NN 255 ()

The Video Editor window looks different in single- and dual-monitor
configurations, as shown in the next figure.

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide

TATOOL

9-43

Figure 9-5

i) &

Color < Red

Sun Value [54] ° I] 255 O
Key value [142] ¢ RN] 255 ()
sperture [198] © NG] 255 ()

POSITION

wiNThor

Sync Type & Taac

Sync file: /usr/taaci/ha rd.lare/sunsync‘

Video Editor Windows - Single- and Dual-Monitor Versions

Summary of Video Editor
Controls

The left side of Video Editor contains three button controls. To
activate these controls, position the cursor over them and click with the
left mouse button. The button controls are:

Done

Save

Single/Dual

Removes the Video Editor. Any newly set keying
parameters remain in effect while the window is
open; the parameters are not saved to the
configuration file.

Saves the Video Editor parameters to the
configuration file located in $TAAC1/hardware/
taconfig.<hostname>.

Switches between single- and dual-monitor
operation and between the two Video Editor
formats. This button is actually represented with
one or two monitor icons.

In the single-monitor Video Editor window, you will also find a four-
button compass used to center TAAC-1 video in the host window. To
set keying values, use the Color cycle symbol and the three sliders
(Sun Value, Key Value, Aperture) with associated increment/

decrement buttons.

In the dual-monitor Video Editor window, the Sync Type cycle symbol
is used to select internal or external (genlock) sync. A Sync File
prompt provides a text field for entering the full file specification of the

sun

microsystems

Revision A of 15 April 1989

9-44

TATOOL TAAC-1 User Guide

Seeing TAAC-1 Video in
a Single-Monitor
Configuration

Keying Setup: Single-
Monitor Operation

sync file or you can select a sync file from all the sync files (Sun, NTSC,
hires, etc.) found in the directory $TAAC1/hardware, using a pull-down
menu and the right mouse button.

There are two ways to see TAAC-1 video in a single-monitor
configuration:

» Display TAAC-1 video only, by switching video control. This
approach has the distinct disadvantage of forcing you to work blind
in the Sun Unix environment, which can be impossible if your cursor
gets moved off the switch or out of the active window that caused
the transition to TAAC-1 video. If this happens, press the TAAC-

1 hardware reset button located on the TAAC-1 backpanel to
return to Sun video control.

* Create a host window within which TAAC-1 video is inserted
using video keying parameters set up with the Video Editor. In
general, this is the only reasonable approach to single-monitor
operation with the TAAC-1.

While you will probably want to create your own windows using
SunView software or other alterative windowing libraries, tatool
provides an easy means of creating a host window with inserted
TAAC-1 video. The tatool window can be positioned and sized like
any Sun window. To quit the window and the process, position the
cursor at the top of the window, press and hold the right mouse button,
pull down the standard Sun menu, and select Done.

Video keying on the TAAC-1 is an analog process determined by an
RGB keying color in a host window and three definable windowed
thresholds on the TAAC-1. Ideally one would like the TAAC-1 to
switch on a single unique host color (e.g., R =100, G = 31, B = 88),
but this is not possible in the analog world. We therefore must accept
a set of host video levels around the nominal color which will cause the
insertion of TAAC-1 video.

The entire keying setup process is driven by the goal of picking a
unique class of color in the Sun windowing environment upon which the
TAAC-1 can key and making this set of colors as small as possible so

as to not unduly reduce the colors available to the remainder of the host

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide

TATOOL 9-45

Video Keying Controls

Adjusting Video
Parameters

display. The selection and adjustment of the keying parameters is an
iterative process of adjusting the RGB key values against a host

canvas color, tightening the aperture to reduce key windowing
tolerance, and repeating the process until acceptable keying is achieved.

tatool provides two standard test patterns (color bars and a gray
scale wedge) for use in the video setup process. To call up a test
pattern, position the cursor within the tatool window outside the
Video Editor panel and press the right mouse button. A pop-up menu
appears that allows you to select either a 512 x 512 color bar pattern
or 512 x 512 gray scale pattern. When selected, these patterns are
written to TAAC-1 image memory (0,0 to 511,511), overwriting any
existing data.

The Video Editor has three large slide bar controls. The top slide bar
(Sun Value) controls the canvas color of the host window. The lower
two slide bars (Key Value, Aperture) control the TAAC-1 keying color
and the size of the TAAC-1 key color window or aperture.

The color slide bars (Sun Value and Key Value) can be used to adjust
the red, green and blue color components independently or collectively
and equally. The Color cycle symbol, located above the sliders, is used
to select the color component(s) affected by the slide bars. To select a
color component for adjustment, position the cursor over the round
cycle symbol and click the left mouse button. Choices include red,
green, blue and gray.

The gray color adjustment allows simultaneous and equal adjustment
of red, green, and blue component values, allowing only grays for the
host canvas and TAAC-1 key values. This mode is required to initially
set up keying, since it is infinitely easier to adjust one value for a
keying match than to simultaneously find three independent values.

To adjust slide bar values, position the cursor over the bar, press and
hold the left mouse button, and move the slide bar to a new position.
Releasing the mouse button *‘locks in’’ the adjustment. The *‘+”’
and “‘-’’ button controls to the right of each slide bar permit
incremental adjustments of the slide bar values. To use these button
controls, position the cursor over the button and click the left mouse
button.

It is best to go through the video keying process with a known image in

sun Revision A of 15 April 1989

microsystems

9-46

TATOOL TAAC-1 User Guide

Gray Adjustment

RGB Keying

TAAC-1 memory so you can actually judge the success and quality of
the keying adjustment. Begin by bringing up the Video Editor with the
<Escape> (Esc) key. Then use the right mouse button, with cursor

still positioned over the main tatool window, to select the color bar
image from the pop-up menu. If the color bar image does not appear,
the TAAC-1 video is not properly keying and the setup procedure must
be followed. Even if the color bar image does appear, it is generally
best to proceed with the adjustment to optimize or tailor the keying
parameters to the user environment.

When the TAAC-1 image is not visible in the tatool window or when
you wish to begin the keying adjustment from scratch, it is important to
start the interactive process in the gray mode with a large aperture.

1. Set the Aperture slide bar to approximately 200.

2. Set the Color cycle to gray and set the Sun Value to a value near
128. ‘

3. Move the Key Value slide bar until the TAAC-1 image appears in
the host window. The key value will in general be larger than the
Sun Value. If keying of TAAC-1 video into the host window does
not occur, increase the Aperture value and try again.

4. Once keying begins, note that a range of key values exists over
which TAAC-1 video is visible. This is the analog nature of the
process. Without trying to be precise, center the Key Value in this
““good’’ key range as well as is possible using either the slide bar
or the associated increment/decrement buttons.

Keying is now operational using a fairly wide aperture. Since many
users will be using monochrome Suntool windows, it is generally best
to pick a final host window color other than gray to achieve good
keying. A distinct separation of RGB components, such as R =128, G
= 64 and B = 192, is recommended. The exact color must be chosen by
the user to avoid keying conflict with colors used in other host window
processes.

The final adjustment phase dials-in your selected color, one component
at a time.

5. Change the Color cycle symbol to red and set your selected host
red value. The video keying will likely be interrupted until you

Sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide

TATOOL 9-47

Video Centering

readjust the red Key Value, again centering the slide bar in the
keying range.

6. Change the Color cycle symbol to green to set up the user-selected
Sun green value and repeat the above procedure for the green Key
Value.

7. Repeat the procedure for the blue value.

8. To minimize the number of host colors which are keyable, reduce
the aperture and repeat the Key Value slide bar adjustment for the
red, green, and blue TAAC-1 key values. Repeat this procedure
two or three times or until you are satisfied with the video keying.
A final aperture setting of 130 to 180 is typical.

9. Once the keying parameters are adjusted to your satisfaction, click
over the Save button. This selection writes the parameters to the
configuration file:

$TAACl/hardware/taconfig.<hostname>

The next time tatool or other TAAC-1 programs are started, this
file will be read and the keying/video parameters will be initialized.

One way to test your keying settings is to move the cursor into the
tatool display window to judge the quality of the key around the
small arrow symbol. If a ‘‘ringing’’ or noisy trail exists, continue
the iterative adjustment process to eliminate or minimize its effect.
Once you are satisfied with keying, check the video centering using
the next procedure.

To center the video:
10. Display one of the 512 x 512 test patterns generated by tatool.
The test pattern should precisely fit the display window.

11. Position the cursor over the left/right or up/down buttons, and click
the left mouse button to center the image in the display window.

12. Once the centering parameters are adjusted to your satisfaction,
click over the Save button. This selection writes the parameters to
the configuration file:

$TAACl/hardware/taconfig.<hostname>

The next time tatool or other TAAC-1 programs are started, this

sun Revision A of 15 April 1989

microsystems

9-48

TATOOL TAAC-1 User Guide

Windowing Library

Seeing TAAC-1 Video in
a Dual-Monitor
Configuration

file will be read and the centering will be initialized.

tatool uses a small library of windowing routines included on the
distribution tape. Refer to the description of the unsupported window
operations in the demo chapter for information on the windowing
routines. The SunView Programmer’s Guide is also helpful.

While the dual-monitor configuration is the most direct approach to
viewing TAAC-1 video, it is necessary to modify the TAAC-1
configuration file to identify the default mode of operation (dual
monitor), the video format (Sun, NTSC, etc.) and sync source (internal .
or external). The tatool Video Editor can be used in this capacity at
initial installation or to re-configure the site defaults.

If the Video Editor window appears in the single-monitor format,
position the cursor over the monitor icon and push the left mouse
button to switch to dual-monitor format. In dual-monitor format of the
Video Editor window, there is a Sync Type cycle symbol used to select
internal or external (genlock) sync. A Sync File prompt provides a text
field for entering the full file specification of the sync file, or you can
select a sync file form all the sync files (Sun, NTSC, hires, etc.) in the
directory $TAAC1/hardware, using a pull-down menu and the right
mouse button. Current video formats include:

/sunsync Normal sun video, 1152 x 900, 66 Hz non-interlaced
/ntscsync RS-170, 648 x 486 active, 30 Hz interlaced
/hiressync High Resolution, 1024 x 1024, 60 Hz non-interlaced

Others video formats may be supplied for unique monitors. Please
check the directory $STAAC1/hardware and the comments within individual
files for specifications.

In summary, to setup dual-monitor operation from the Video Editor:

1. Select dual-monitor operation by clicking on the single-monitor
icon button.

2. Select Sync File from the pull down menu of available video
formats which matches your dedicated TAAC-1 monitor.

3. Select Sync Type to be internally generated TAAC-1 sync or

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide TATOOL 9-49

external applied sync in which case the TAAC-1 genlocks to
incoming sync (see hardware installation for cabling details).

4. Save the results to the file:
STAACl/hardware/taconfig.<hostname>
by pressing the Save button.

sun Revision A of 15 April 1989

microsystems

9-50

TATXT20 TAAC-1 User Guide

9.15. tatxt2o, Convert
Text File to Sun
Object File

Command Syntax

The utility tatxt2o converts a text file to a host object file so that it
can be linked into a host program. It creates a null-terminated string
with the same result as if you had declared:

char ta_helptxt[] = "ENTIRE CONTENTS OF FILE";

This utility was designed for use in conjunction with the unsupported
demo window library routine ta_help(). ta_help() displays the
contents of the global variable ta_helptxt (] in a pop-up text window.
The object file (. o) created by tatxt2o should be added to the object
file list in the link command. Only one text file can be compiled and
linked into a host program.

For more information, see ta_help () in the demo description chapter.

To invoke tatxt2o, type:

% tatxt2o input_ file output_file

Where:

» input_file specifies the input text file.

» output_file specifies the output Sun object file.

sun Revision A of 15 April 1989

microsystems

TAAC-1 User Guide:
Revision History

This page helps you keep track of changes to this manual. If you do not
know if your manual is current, use this table to confirm that all updates

have been added:
Revision History Table
Revision Date Pages Removed Pages Inserted
15 September 1989 Complete revision
15 April 1989 ix, x ix, x
3-9,3-10 3-9,3-10
3-17,3-18 3-17, 3-18
3-19, 3-20 3-19, 3-20
3-27, 3-28 3-27,3-28
3-53,3-54 3-53,3-54
4-5,4-6 4-5, 4-6
4-7,4-8 4-7,4-8
4-7.1,4-7.2,4-8
4-9, 4-10 4-9,4-10
6-3, 6-4 6-3, 6-4
6-5, 6-6 6-5, 6-6
8-27, 8-28 8-27, 8-28
sSsunmn 1 Revision A of 15 April 1989

microsystems

TAAC-1 User Guide:
Change Pages

TAAC-1 software release 2.3 includes a complete revision of the
TAAC-1 Software Reference and a set of change pages for the TAAC-!
User Guide. These instructions show you how to insert the new pages
into the User Guide. The update table describes the nature of the
changes.

A revision history page is also provided, for addition to the back of the
User Guide.

TAAC-1 User Guide Update Summary

Remove These Pages Add These Pages Description of Change

ix, x ix, x new utilities chapter 9 contents

3-9, 3-10 3-9,3-10 new restrictions on use of ta_map
and ta_use_map

3-17, 3-18 3-17, 3-18 addition of usleep() to host program

3-19, 3-20 3-19, 3-20

3-27,3-28 3-27, 3-28 addition of usleep() to host program
example

3-53, 3-54 3-53, 3-54 change to fscanf() arguments in
poly.c example

4-5, 4-6 4-5,4-6 new description of -fsingle

4-7, 4-8 4-7.1,4-7.2 functions returning structures now

4-9,4-10 4-8, 4-9, 4-10 supported

6-3, 6-4 6-3-6-6 new -g option to talink

6-5, 6-6

8-27, 8-28 8-27, 8-28 added missing line in double
precision math example

(continued)

S u n . Part Number: 800-3712-10

microsystems 1 Revision A of 15 April 1989

Change Pages, continued

TAAC-1 User Guide Update Summary, continued

Remove These Pages Add These Pages Description of Change
Chap. 9, all Chapter 9, all new Image File Format (IFF)
utilities

changes to taload, taread to support
IFF format

tadeb: how to access local variables
taabs20: multiple .abs files

